
แนวทางในการจัดกิจกรรมภาคปฏิบัติ

หัวข้อการเรียนรู้ :
การออกแบบโมเดลข้อมูลและการใช้ SwiftData (Data Modeling & SwiftData)

ระยะเวลาในการทำกิจกรรม: 360 นาที

วัตถุประสงค์ในการทำกิจกรรม :
เมื่อสิ้นสุดบทเรียน ผู้เรียนจะสามารถ:

1. วิเคราะห์บริบทของปัญหาในโลกจริง และระบุองค์ประกอบของข้อมูลหลักได้อย่างถูกต้อง โดยสามารถ
แยกแยะ Entity, Attribute และ Relationship จากสถานการณ์ที่กำหนด โดยไม่อ้างอิงโครงสร้าง UI หรือ
รายละเอียดของเทคโนโลยีที่ใช้

2. ออกแบบ Conceptual Data Model ในระดับนามธรรมได้อย่างเป็นระบบ โดยสร้างแบบจำลองข้อมูลที่
สะท้อนโครงสร้างและความสัมพันธ์ของข้อมูลในเชิงแนวคิด โดยไม่ผูกติดกับภาษาโปรแกรม ฐานข้อมูล หรือ
Framework ใด ๆ

3. อธิบายความแตกต่างระหว่าง In-memory Model และ Persistent Model ได้อย่างถูกต้องในเชิงแนวคิด
โดยสามารถเชื่อมโยงความแตกต่างดังกล่าวกับแนวคิดเรื่อง lifecycle, identity และบทบาทของข้อมูลใน
ระดับระบบ

4. ยกระดับ Data Model จาก struct ไปสู่ SwiftData @Model ได้อย่างมีเหตุผลเชิงสถาปัตยกรรม โดย
สามารถอธิบายเหตุผลของการใช้ class แทน struct ในบริบทของ SwiftData และอธิบายบทบาทของ
Persistent Domain Model ในการจัดการข้อมูลของแอปพลิเคชัน

ความคิดรวบยอด:
	 กิจกรรมการเรียนรู้ชุดนี้มุ่งพัฒนาความรู้ และความเข้าใจของผู้ เรียนเกี่ยวกับการออกแบบและ
พัฒนาแอปพลิเคชันบนระบบปฏิบัติการ iOS โดยยึด “ข้อมูล” เป็นศูนย์กลางของกระบวนการคิดและการ
พัฒนามากกว่าการเริ่มต้นจากส่วนติดต่อผู้ใช้หรือการเขียนโค้ดเชิงโต้ตอบเพียงอย่างเดียว แนวทางดัง
กล่าวตั้งอยู่บนกรอบแนวคิด Thinking in Data ซึ่งเน้นการทำความเข้าใจโครงสร้างของข้อมูล ความ
สัมพันธ์ของข้อมูล และบทบาทของข้อมูลในระดับสถาปัตยกรรม ก่อนนำไปสู่การพัฒนาเชิงเทคนิคด้วย
ภาษา Swift, SwiftUI และ SwiftData ภายใต้สถาปัตยกรรม MVVM
	
บทความสำหรับอ่านประกอบการทำกิจกรรม
https://ajthiti.gitbook.io/develop-in-swift/swiftdata/thinking-in-data

แนวทางในการจัดกิจกรรมการเรียนรู้

ขั้นนำเข้าสู่บทเรียน (Warm-up)
	 ขั้นนำเข้าสู่บทเรียนในหัวข้อนี้มีบทบาทสำคัญในการเปลี่ยนกรอบความคิดเดิมของผู้เรียนเกี่ยวกับการ
พัฒนาแอปพลิเคชันและนำพาผู้เรียนไปสู่มุมมองใหม่ที่ยึดข้อมูลเป็นศูนย์กลาง การดำเนินกิจกรรมในช่วงนี้จึงไม่ควร
เริ่มจากการบรรยายทฤษฎีหรือเปิดโปรแกรมพัฒนาแอปทันที แต่ควรเริ่มจากการตั้งคำถามเชิงสถานการณ์ที่ใกล้ตัว
และเปิดพื้นที่ให้ผู้เรียนได้แสดงกระบวนการคิดของตนเองอย่างเป็นธรรมชาติ
	 ผู้สอนสามารถเริ่มต้นด้วยการยกตัวอย่างสถานการณ์ง่าย ๆ เช่น “หากเราต้องการพัฒนาแอปบันทึก
รายจ่ายสำหรับนักศึกษา แอปนี้ควรเป็นอย่างไร” คำถามนี้ตั้งใจให้ผู้เรียนตอบอย่างอิสระ โดยไม่กำหนดกรอบล่วง
หน้า ผู้สอนควรจดคำตอบทั้งหมดไว้บนกระดานโดยไม่ประเมินหรือวิจารณ์ทันที โดยทั่วไปคำตอบที่ได้มักเกี่ยวข้อง

https://ajthiti.gitbook.io/develop-in-swift/swiftdata/thinking-in-data

กับหน้าจอ ปุ่ม หรือองค์ประกอบของส่วนติดต่อผู้ใช้ เช่น หน้ารายการรายจ่าย ปุ่มเพิ่มข้อมูล หน้าสรุปยอด หรือหน้า
จอเลือกหมวดหมู่
	 เมื่อคำตอบส่วนใหญ่สะท้อนถึงการคิดเชิงการออกแบบ UI ผู้สอนจึงค่อยๆ ตั้งคำถามต่อยอดในลักษณะที่
เปลี่ยนทิศทางของการคิด เช่น “ระบบนี้ต้องจัดการข้อมูลอะไรบ้าง” หรือ “ข้อมูลหนึ่งรายการต้องประกอบด้วย
อะไรจึงจะสมบูรณ์” คำถามเหล่านี้จะทำให้ผู้เรียนเริ่มเปลี่ยนจากการคิดถึงสิ่งที่มองเห็นบนหน้าจอไปสู่การคิดถึงสิ่งที่
ระบบต้องรับผิดชอบในระดับโครงสร้าง ผู้เรียนจะเริ่มพูดถึงข้อมูลรายจ่าย จำนวนเงิน วันที่ หมวดหมู่ หรือความ
สัมพันธ์ระหว่างรายการต่างๆ ซึ่งเป็นจุดที่ผู้สอนสามารถชี้ให้เห็นอย่างชัดเจนว่า ขณะนี้ทั้งชั้นเรียนกำลังออกแบบ
“โครงสร้างของระบบ” โดยยังไม่ได้กล่าวถึงเทคโนโลยีใดเลย ในขั้นตอนนี้ ผู้สอนไม่ควรรีบสรุปเชิงทฤษฎี แต่ควรใช้
วิธีสะท้อนความคิดกลับไปยังผู้เรียน เช่น การชี้ให้ผู้เรียนเห็นว่า ช่วงแรกทุกคนคิดถึงหน้าจอ แต่เมื่อเปลี่ยน
คำถาม ทุกคนเริ่มพูดถึงข้อมูล การสะท้อนเช่นนี้ช่วยให้ผู้เรียนตระหนักด้วยตนเองถึงความแตกต่างระหว่างการคิด
แบบ UI-Driven กับ Data-Driven ซึ่งเป็นแก่นสำคัญของบทเรียน
	 สิ่งสำคัญคือผู้สอนควรใช้กระดานหรือสื่อที่มองเห็นร่วมกัน มากกว่าการเปิดเครื่องมือพัฒนาโปรแกรม
ทันที เพราะจุดประสงค์ของช่วง Warm-up ไม่ใช่การเริ่มลงมือเขียนโค้ด แต่เป็นการเตรียมกรอบความคิด หากผู้
เรียนสามารถมองเห็นว่า การออกแบบข้อมูลเกิดขึ้นได้ก่อนการเลือกเครื่องมือ พวกเขาจะพร้อมเปิดรับแนวคิด
Thinking in Data ในขั้นถัดไป

ขั้นการเรียนรู้ (Learn)
	
กิจกรรมที่ 1: กรอบแนวคิด (Conceptual Framework) ของ Thinking in Data

	 ในขั้นการเรียนรู้ช่วงนี้ ผู้สอนมีบทบาทสำคัญในการวาง “โครงสร้างทางความคิด” ให้กับผู้เรียนอย่างเป็น
ระบบ กิจกรรมนี้ไม่ควรถูกมองว่าเป็นเพียงการบรรยายแนวคิดเชิงทฤษฎี แต่เป็นการค่อยๆ พาผู้เรียนปรับมุมมอง
จากการคิดแบบเน้นส่วนติดต่อผู้ใช้ ไปสู่การคิดเชิงโครงสร้างข้อมูล การอธิบายควรดำเนินอย่างต่อเนื่องโดยเชื่อม
โยงกับสิ่งที่ผู้เรียนได้อภิปรายในช่วงนำเข้าสู่บทเรียน เพื่อให้เกิดความสอดคล้องทางความคิดและไม่ทำให้เนื้อหาถูก
ตัดขาดเป็นส่วน ๆ

	 ผู้สอนควรเริ่มต้นด้วยการสะท้อนบทสนทนาในช่วง Warm-up โดยชี้ให้เห็นว่า เมื่อคำถามเปลี่ยนจาก “แอป
ควรมีหน้าจออะไร” ไปเป็น “ระบบต้องจัดการข้อมูลอะไร” ผู้เรียนจะเริ่มเห็นโครงสร้างของระบบอย่างชัดเจนขึ้น จาก
จุดนี้จึงอธิบายว่า แนวทางการคิดดังกล่าวคือหัวใจของกรอบแนวคิดที่เรียกว่า Thinking in Data ซึ่งเป็นรูปแบบ
หนึ่งของการคิดเชิงคำนวณที่ให้ความสำคัญกับโครงสร้างและความสัมพันธ์ของข้อมูล ก่อนการพิจารณา
กระบวนการหรือเทคโนโลยีที่ใช้พัฒนา

	
	 การอธิบายควรเริ่มจากภาพรวมของกรอบแนวคิด โดยเน้นว่า Thinking in Data ประกอบด้วยกระบวนการ
ที่มีลำดับความคิดชัดเจน ตั้งแต่การทำความเข้าใจบริบทของปัญหา ไปสู่การสร้างแบบจำลองข้อมูลเชิงแนวคิด จาก

นั้นจึงเชื่อมโยงแบบจำลองดังกล่าวเข้าสู่การออกแบบแอป และปิดท้ายด้วยความพร้อมในการพัฒนาเชิงเทคนิค
การนำเสนอควรใช้ภาษาที่เรียบง่ายและส่งเสริมให้ผู้เรียนเห็นว่า กระบวนการนี้เป็น “วิธีคิด” มากกว่าสูตรสำเร็จทาง
เทคนิค

ขั้นตอนที่ 1: Problem Context
ในส่วนของ Problem Context ผู้สอนควรเน้นย้ำว่า การเริ่มต้นที่ถูกต้องของระบบใด ๆ ไม่ได้อยู่ที่หน้าจอ
หรือโค้ด แต่คือการทำความเข้าใจโลกจริงที่ระบบต้องตอบสนอง ผู้สอนควรตั้งคำถามว่า

• ผู้ใช้ต้องการทำอะไรในชีวิตจริง
• พฤติกรรมใดเกิดขึ้นซ้ำ ๆ
• ระบบต้องช่วยแก้ปัญหาอะไร

ตัวอย่างกรณีแอปบันทึกรายจ่ายสามารถนำมาใช้ประกอบการอธิบายได้อย่างชัดเจน โดยชี้ให้เห็นว่า สิ่งที่
เกิดขึ้นจริงคือเหตุการณ์การใช้จ่าย ซึ่งมีจำนวนเงิน มีเวลา และมีบริบท ข้อมูลเหล่านี้เกิดขึ้นโดยไม่เกี่ยวข้อง
กับ UI การทำความเข้าใจบริบทเช่นนี้ช่วยให้ผู้เรียนมองเห็นว่าระบบมีหน้าที่จัดการ “เหตุการณ์” ไม่ใช่จัดการ
“หน้าจอ”

	 ขั้นตอนที่ 2: Conceptual Data Model

เมื่อบริบทชัดเจนแล้ว ผู้สอนจึงพาผู้เรียนเข้าสู่ขั้น Conceptual Data Model โดยอธิบายว่า ขั้นตอนนี้คือ
การแยกสิ่งที่ระบบต้องจัดการออกเป็นหน่วยข้อมูลเชิงนามธรรม ได้แก่ Entity, Attribute และ
Relationship การอธิบายควรใช้ตัวอย่างเดียวกันเพื่อความต่อเนื่อง เช่น Expense เป็น Entity หลัก ส่วน
Category เป็นอีก Entity หนึ่งที่มีความสัมพันธ์กับ Expense ในลักษณะหนึ่งต่อหลาย ผู้สอนควรชี้ให้เห็น
ว่า การระบุองค์ประกอบเหล่านี้ไม่ได้เกิดจากการดูหน้าจอ แต่เกิดจากการวิเคราะห์ธรรมชาติของข้อมูล หาก
ผู้เรียนเริ่มพูดถึงช่องกรอกข้อมูลหรือปุ่ม ผู้สอนควรค่อย ๆ นำกลับมาสู่คำถามว่า “ข้อมูลนี้มีตัวตนในโลก
จริงหรือไม่”

ขั้นตอนที่ 3: Data-Oriented Application Design
ในขั้นตอนนี้ ผู้สอนควรชี้ให้ผู้เรียนเห็นถึงความจำเป็นของ การแยกบทบาทของ Data Model (ข้อมูล
ถาวร) และ UI State (สถานะชั่วคราวของหน้าจอ) ตัวอย่างเช่น จำนวนเงินทีผู่้ใช้กำลังพิมพ์อยู่ในช่อง
กรอกข้อมูลเป็นเพียง UI State ซึ่งมีอายุสั้นและเปลี่ยนแปลงได้ตลอดเวลา ขณะที่ Expense เป็น Data
Model ที่ถูกบันทึกลงในระบบเพื่อเป็นข้อมูลถาวรของโดเมน การแยกสองสิ่งนี้ออกจากกันช่วยลดความซับ
ซ้อนของโครงสร้าง และป้องกันไม่ให้ตรรกะของ UI เข้าไปปะปนกับข้อมูลหลัก ผู้สอนควรเน้นว่า การ
ออกแบบที่ดีเริ่มจากการแยกความรับผิดชอบอย่างชัดเจน

ขั้นตอนที่ 4: Implementation Readiness
เมื่อโครงสร้างข้อมูลถูกออกแบบอย่างถูกต้องแล้ว การเขียนโค้ดจะเป็นเพียงกระบวนการถ่ายทอด
แนวคิดด้วยภาษาโปรแกรม ตัวอย่างการสร้าง struct ของ Expense ใน Swift ควรถูกอธิบายว่าเป็นการ
แปลง Conceptual Model ให้เป็นโครงสร้างเชิงเทคนิค ไม่ใช่การเริ่มต้นคิดใหม่ทั้งหมด ผู้สอนควรตั้ง
คำถามสะท้อนให้ผู้เรียนเห็นว่า หากแบบจำลองข้อมูลชัดเจนตั้งแต่ต้นการพัฒนาในขั้นถัดไปจะมีความเป็น
ระบบและลดความสับสนอย่างไร

ตลอดการดำเนินกิจกรรม ผู้สอนควรใช้กระดานหรือสื่อที่ผู้เรียนสามารถมองเห็นร่วมกัน วาดโครงสร้าง Entity และ
Relationship ให้ชัดเจน และเปิดโอกาสให้ผู้เรียนเสนอแนวคิดเพิ่มเติม การมสี่วนร่วมเช่นนีช้่วยให้ผู้เรียนรู้สึกว่าตนเอง
เป็นส่วนหนึ่งของกระบวนการออกแบบ ไม่ใช่เพียงผู้รับสาร การหลีกเลี่ยงการเปิดเครื่องมือพัฒนาโปรแกรมในช่วงนี้
จะช่วยให้ผู้เรียนโฟกัสที่แนวคิดมากกว่ารายละเอียดทางเทคนิค

กิจกรรมที่ 2: จาก Conceptual Model สู่ Swift Data Model

	 กิจกรรมในส่วนนี้มีจุดมุ่งหมายเพื่อพาผู้เรียนเปลี่ยนผ่านจากแบบจำลองข้อมูลเชิงแนวคิด (Conceptual
Data Model) ที่ได้วิเคราะห์ไว้ในกิจกรรมก่อนหน้า ไปสู่การสร้างแบบจำลองข้อมูลในระดับภาษาโปรแกรมอย่างมีหลัก
การ ผู้สอนควรเน้นให้เห็นว่า การเขียนโค้ด คือ การถ่ายทอดแนวคิดเชิงโครงสร้างที่ออกแบบไว้แล้วลงในภาษา
Swift ซึ่งทำหน้าที่เป็น Modeling Language
	

	 ผู้สอนอธิบายว่า เมื่อได้ Conceptual Model แล้ว ขั้นตอนถัดไปคือ การเลือกภาษาโปรแกรมที่สามารถ
ถ่ายทอดโครงสร้างข้อมูลได้อย่างชัดเจน และ Swift เป็นภาษาที่ออกแบบมาโดยคำนึงถึงความปลอดภัยของข้อมูล
(safety) และความชัดเจนของโครงสร้าง (clarity) ให้ผู้เรียนทบทวนว่า ในระดับแนวคิด เรามี Entity ชื่อ Expense
และ Category พร้อม Attribute และ Relationship ที่ชัดเจนแล้ว คำถาม คือ “เราจะถ่ายทอดสิ่งนี้ลงในโค้ดอย่างไร
โดยยังรักษาความหมายเชิงโดเมนไว้ครบถ้วน”
ผู้สอนอาจทำการสาธิตการสร้าง Data Model (หรือกำหนดให้ผู้เรียนทำตามไปพร้อมกัน) โดยการสร้าง Xcode
Playground เพื่อให้ผู้เรียนเห็นกระบวนการอย่างเป็นขั้นตอน โดยเขียนโครงสร้าง Expense ตาม Conceptual
Model ดังนี้

import Foundation

struct Expense: Identifiable {
 let id: UUID = UUID()
 let amount: Double
 let date: Date
 let note: String?
}

let expense1 = Expense(amount: 120, date: Date(), note: "Lunch")
let expense2 = expense1

ระหว่างพิมพ์โค้ด ผู้สอนอาจอธิบายอย่างช้าๆ เกี่ยวกับ
• การใช้ struct ซึ่งสะท้อนถึง Value Semantics

ผู้สอนอธิบายว่า struct ใน Swift ใช้แนวคิดแบบ Value Semantics ซึ่งหมายความว่า ทุกครั้งที่มีการส่ง
ต่อหรือกำหนดค่า (เช่น expense2 = expense1) จะเกิดการ “คัดลอกค่า” ไม่ใช่การอ้างอิงไปยังวัตถุ
เดียวกัน จากตัวอย่าง expense2 เป็นสำเนาของ expense1 หากมีการเปลี่ยนแปลง การเปลี่ยนแปลงจะไม่
กระทบต้นฉบับ

• การใช้ let เพื่อกำหนดให้ข้อมูลเป็น immutable

เมื่ออธิบายถึง property ภายใน struct ผู้สอนควรชี้ให้เห็นว่า ทุกตัวถูกประกาศด้วย let แทน var และตั้ง
คำถามว่า “เหตุใดเราจึงไม่อนุญาตให้เปลี่ยนแปลงค่าหลังสร้างเสร็จ” แนวคิดของ immutability มีความ
สำคัญอย่างยิ่งในเชิงสถาปัตยกรรม เพราะช่วยป้องกันการเปลี่ยนแปลงข้อมูลโดยไม่ตั้งใจ หากข้อมูล
สามารถถูกแก้ไขได้จากหลายตำแหน่ง โอกาสเกิดข้อผิดพลาดจะเพิ่มขึ้นอย่างมาก ในบริบทของรายจ่าย
หนึ่งรายการ เหตุการณ์ที่เกิดขึ้นในอดีตควรถูกบันทึกเป็นข้อเท็จจริง (fact) ไม่ควรถูกเปลี่ยนแปลงโดย
พลการ หากต้องแก้ไข ควรสร้างอินสแตนซ์ใหม่แทนที่จะเปลี่ยนแปลงค่าภายใน นี่คือแนวคิดทีช่่วยให้ระบบมี
ความปลอดภัยและตรวจสอบได้ง่าย

• การกำหนด Optional เพื่อสะท้อนความไม่แน่นอนในโลกจริง
ในการอธิบายข้อมูลแบบ Optional ผู้สอนไม่ควรอธิบายเพียงว่า “ใส่ ? เพราะเป็นตัวแปรที่อาจไม่มคี่า” แต่
ควรขยายความในเชิงการออกแบบข้อมูลว่า Optional เป็นกลไกที่สะท้อนความเป็นจริงของโลกจริง ใน
กรณีรายจ่าย บางครั้งผู้ใช้อาจใส่รายละเอียดเพิ่มเติม เช่น “Lunch with team” แต่บางครั้งอาจไม่ใส่อะไร
เลย การกำหนดให้ note เป็น String? แสดงให้เห็นว่า แบบจำลองข้อมูลยอมรับความไม่แน่นอน และไม่
บังคับให้ทุกข้อมูลต้องสมบูรณ์ ดังนั้น Optional ไม่ได้มีไว้เพื่อหลีกเลี่ยง error เท่านั้น แต่เป็นการ “สื่อสาร
ความหมายของข้อมูล” ในระดับ Data Model ว่าคุณลักษณะนี้ไม่จำเป็นต่อมคี่าเสมอไป การออกแบบเช่นนี้
ช่วยให้แบบจำลองมีความยืดหยุ่นและสอดคล้องกับบริบทจริง

• Identifiable ช่วยให้ SwiftUI ติดตามข้อมูลแต่ละรายการได้
ในการอธิบายถึง Identifiable และ let id: UUID = UUID () ผู้สอนควรเชื่อมโยงกับการทำงานของ
SwiftUI โดยตั้งคำถามว่า “ถ้าเรามีรายการรายจ่ายหลายรายการ SwiftUI จะรู้ได้อย่างไรว่ารายการใดคือ
รายการเดิม” SwiftUI ใช้กลไก identity เพื่อติดตามการเปลี่ยนแปลงของข้อมูลใน List หรือ ForEach หาก
ไม่มี identifier ที่ชัดเจน SwiftUI จะไม่สามารถแยกแยะรายการเก่าและใหม่ได้อย่างถูกต้อง
การกำหนด let id: UUID = UUID () จึงทำให้รายจ่ายแต่ละรายการมีอัตลักษณ์เฉพาะตัว ผู้สอนควรเน้นว่า
id ไม่ได้มีไว้เพื่อการแสดงผล แต่เป็นกลไกเชิงโครงสร้างที่ช่วยให้ระบบสามารถจัดการการเปลี่ยนแปลงของ
ข้อมูลได้อย่างมีประสิทธิภาพ

ให้ผู้เรียนทดลองสร้าง Data Model ด้วย struct

import Foundation

struct Category: Identifiable, Hashable {
 let id: Int
 var name: String
}

let food = Category(id: 1, name: "Food")
let shopping = Category(id: 2, name: "Shopping")

struct Expense: Identifiable {
 let id: UUID = UUID()
 let amount: Double
 let date: Date
 let note: String?
 let category: Category

 init(amount: Double, date: Date, note: String? = nil, category: Category) {
 self.amount = amount
 self.date = date
 self.note = note
 self.category = category
 }
}

let expenses = [
 Expense(amount: 120, date: Date(), note: "Lunch", category: food),
 Expense(amount: 1000, date: Date(), category: shopping)
]

for item in expenses {
 print("Amount: \(item.amount)")
 print("Date: \(item.date)")
 print("Note: \(item.note ?? "None")")
 print("-------------------")
}

กิจกรรมที่ 3: การเปลี่ยนจาก struct สู่ SwiftData @Model

	 ในหัวข้อนี้เป็นช่วงเปลี่ยนผ่านที่สำคัญจาก Data Model ที่สร้างด้วย struct ไปสู่ SwiftData ผู้สอนควรให้
ความสำคัญกับ “เหตุผลของการยกระดับ” มากกว่า การแนะนำเครื่องมือใหม่ทันที เป้าหมายของช่วงนี้คือ การทำให้
ผู้เรียนตระหนักว่า แม้ Model ที่ออกแบบด้วย struct จะมีความปลอดภัยและชัดเจนในเชิงโครงสร้าง แต่ก็ยังมีข้อ
จำกัดเชิงระบบที่ไม่เพียงพอสำหรับการใช้งานจริงในระดับแอปพลิเคชัน

3.1. ความแตกต่างระหว่าง Value Semantics และ Reference Semantics

	 struct ในภาษา Swift ใช้แนวคิดแบบ Value Semantics กล่าวคือ เมื่อมีการกำหนดค่าหรือส่งต่อข้อมูล จะ
เกิดการคัดลอกค่า (copy) ทำให้แต่ละอินสแตนซ์มีสถานะเป็นอิสระจากกัน การเปลี่ยนแปลงค่าของอินสแตนซ์หนึ่งจะ
ไม่ส่งผลกระทบต่ออินสแตนซ์อื่นโดยไม่ตั้งใจ

struct Score {
 var value: Int
}

var studentA = Score(value: 50)
var studentB = studentA

studentB.value = 80
print(studentA.value) // 50
print(studentB.value) // 80

	 ในทางตรงกันข้าม class ใช้แนวคิดแบบ Reference Semantics ซึ่งหมายความว่าอินสแตนซ์หลายตัว
สามารถอ้างอิงไปยังข้อมูลชุดเดียวกันได้ การเปลี่ยนแปลงผ่านอ้างอิงหนึ่งจะส่งผลกระทบต่ออ้างอิงอื่นทั้งหมด
แนวคิดนี้มีความสำคัญในบริบทที่ข้อมูลต้องมีอัตลักษณ์ (identity) และวงจรชีวิต (lifecycle) ที่ชัดเจน เช่น ข้อมูลที่
ต้องถูกจัดเก็บถาวร ถูกแก้ไขซ้ำ และถูกใช้งานร่วมกันในหลายส่วนของระบบ

class Score {
 var value: Int
 init(value: Int) {
 self.value = value
 }
}

var studentA = Score(value: 50)
var studentB = studentA

studentB.value = 80
print(studentA.value) // 80
print(studentB.value) // 80

3.2. ความแตกต่างระหว่าง In-memory Model และ Persistent Model
	 ผู้สอนควรตั้งคำถามนำ เพื่อกระตุ้นการคิด เช่น “ถ้าเราปิดแอปแล้วเปิดใหม่ ข้อมูลจะยังอยู่หรือไม่?” และควร
ปล่อยให้ผู้เรียนตอบก่อน แล้วจึงให้ทดลองสร้างแอปอย่างง่ายๆ ชื่อ InMemoryDemo ดังนี้

import SwiftUI

struct Expense {
 let amount: Double
 let date: Date
}

struct ContentView: View {

 @State private var expenses: [Expense] = []

 var body: some View {
 VStack {
 Button("Add Expense") {
 expenses.append(
 Expense(amount: 120, date: .now)
)
 }

 List(expenses, id: \.date) { expense in
 Text("\(expense.amount)")
 }
 }
 }
}

ทดลองรันโปรแกรมและกดปุ่ม “Add Expense” หลายครั้ง จะมีรายการปรากฏใน List
หยุดรันแอป (Stop) และ รันใหม่อีกครั้ง
ผลลัพธ์ : รายการทั้งหมดหายไป

ผู้สอนอธิบายว่า Data Model ที่ใช้ struct จะเป็นเพียง In-memory Model กล่าวคือ ข้อมูลมีชีวิตอยู่เฉพาะใน
หน่วยความจำระหว่างที่แอปทำงาน เมื่อแอปหยุดทำงาน ข้อมูลจะสูญหายทั้งหมด
จากนั้นควรขยายความถึงข้อจำกัดสำคัญของ In-memory Model ดังนี้

1. ไม่มีความคงอยู่ (No Persistence) - ข้อมูลไม่สามารถถูกจัดเก็บและเรียกกลับมาใช้งานได้เมื่อเปิดแอปใหม
2. ไม่มีวงจรชีวิตในระดับระบบ (No Lifecycle Management) - ไม่มีระบบติดตามโดยอัตโนมัตวิ่า object ถูก

สร้างเมื่อใด ถูกแก้ไขเมื่อใด หรือถูกลบเมื่อใด ผู้พัฒนาต้องจัดการเอง
3. ไม่มีการจัดการความสอดคล้องของข้อมูล (No Consistency Across Views) - ในระบบที่มีหลาย View

หรือหลาย ViewModel การจัดการข้อมูลแบบธรรมดาอาจทำให้เกิดปัญหาการอ้างอิงที่ไม่สอดคล้องกัน
	 ผู้สอนอธิบายต่อไปว่า แม้ struct จะเหมาะกับการสร้างแบบจำลองเชิงแนวคิด แต่เมื่อระบบมีความซับซ้อน
มากขึ้น ข้อจำกัดเหล่านี้จะกลายเป็นอุปสรรคเชิงสถาปัตยกรรม เมื่อผู้เรียนเห็นข้อจำกัดของ In-memory Model
แล้ว ผู้สอนจึงอธิบายว่า SwiftData ทำหน้าที่เป็นกลไกที่ยกระดับ Data Model ให้กลายเป็น Persistent Model ควร
เน้นประโยคสำคัญว่า SwiftData ไม่ได้เปลี่ยนโครงสร้างข้อมูล แต่เปลี่ยนบทบาทของข้อมูลในระบบ

ให้ผู้เรียนลองสร้างโปรเจกต์ใหม่ โดยตั้งชื่อว่า PersistentModelDemo จากนั้นทดลองสร้างโมเดลข้อมูลด้วย Class
และ SwiftData ดังนี้

import SwiftUI
import SwiftData

@Model
class Expense {
 var amount: Double
 var date: Date

 init(amount: Double, date: Date) {
 self.amount = amount
 self.date = date
 }
}

struct ContentView: View {

 @Environment(\.modelContext) private var context
 @Query private var expenses: [Expense]

 var body: some View {
 VStack {
 Button("Add Expense") {
 let expense = Expense(amount: 120, date: .now)
 context.insert(expense)
 try? context.save()
 }

 List(expenses, id: \.date) { expense in
 Text("\(expense.amount)")
 }
 }
 }
}

และแก้ไขคำสั่งที่ไฟล์ PersistentModelDemoApp.swift ดังนี้

import SwiftUI
import SwiftData

@main
struct PersistentModelDemoApp: App {
 var body: some Scene {
 WindowGroup {
 ContentView()
 }
 .modelContainer(for: [Expense.self])
 }
}

ทดลองรันโปรแกรมและกดปุ่ม “Add Expense” หลายครั้ง จะมีรายการปรากฏใน List
หยุดรันแอป (Stop) และ รันใหม่อีกครั้ง
ผลลัพธ์ : รายการทั้งหมดยังคงอยู่

เพื่อให้ผู้เรียนเกิดความเข้าใจเกี่ยวกับการใช้ SwiftData ผู้สอนควรอธิบายเพิ่มเติมดังนี้
• ในขั้นแรก ผู้สอนควรชี้ให้ผู้เรียนเห็นว่า คลาส Expense ไม่ใช่เพียงโครงสร้างข้อมูลทั่วไป แต่เป็นตัวแทนของ

ข้อมูลที่ต้องถูกจัดเก็บถาวรในฐานข้อมูลของแอป การใช้ @Model ทำหน้าที่ประกาศให้ SwiftData ทราบว่า
คลาสนี้เป็น entity ที่ต้องถูกติดตาม จัดการ และบันทึกลง persistent store เมื่อ SwiftData พบ @Model
ระบบจะสร้าง schema สำหรับจัดเก็บข้อมูลโดยอัตโนมัติ เปลี่ยน property ภายในคลาสให้กลายเป็นฟิลด์ในฐาน
ข้อมูล และจัดเตรียมกลไกสำหรับติดตามการเปลี่ยนแปลงของ object แต่ละตัว นอกจากนี้ SwiftData ยังสร้าง
อัตลักษณ์ของ object เพื่อให้สามารถอ้างอิงและซิงโครไนซ์ข้อมูลระหว่างหลาย view ได้อย่างถูกต้อง

จุดสำคัญที่ควรเน้นคือ SwiftData กำหนดให้โมเดลต้องเป็น class แทนที่จะเป็น struct เนื่องจากระบบต้องการ
reference semantics เพื่อให้สามารถติดตาม identity ของ object และจัดการ transaction ได้อย่างมี
ประสิทธิภาพ

• หลังจากกำหนดโมเดลข้อมูลแล้ว ขั้นตอนถัดมา คือ การกำหนด container ของข้อมูลในไฟล์หลักของแอป
คำสั่ง .modelContainer(for: [Expense.self]) มีบทบาทสำคัญในการเปิดใช้งานระบบจัดเก็บข้อมูลของ
SwiftData ผู้สอนควรอธิบายว่า model container เปรียบเสมือนตัวแทนของฐานข้อมูลทั้งระบบ โดยมีหน้าที่
สร้าง persistent store โหลด schema จากโมเดลที่กำหนด จัดการการย้ายโครงสร้างข้อมูล (migration) และ
สร้าง context สำหรับให้ view ต่าง ๆ ในแอปใช้ร่วมกัน การระบุ [Expense.self] เป็นการบอกให้ SwiftData
ทราบว่าฐานข้อมูลนี้ต้องรองรับ Entity ใดบ้าง และจะใช้รายการนี้ในการสร้างโครงสร้างของฐานข้อมูลตั้งแต่
เริ่มต้น
การอธิบายส่วนนี้ควรทำให้ผู้เรียนเห็นว่า container เป็นศูนย์กลางของระบบ persistence ที่เชื่อมกับ lifecycle
ของแอปทั้งหมด

• ภายใน ContentView การดึง modelContext ผ่าน @Environment(\.modelContext) เป็นขั้นตอนที่ทำให้
View สามารถเข้าถึงพื้นที่ทำงานสำหรับอ่านและเขียนข้อมูลได้ โดย context ทำหน้าที่เป็น workspace หรือ
session สำหรับการทำงานกับข้อมูลในช่วงเวลาหนึ่ง โดย context จะเก็บ object ที่ถูกโหลดมา ติดตามการ
เปลี่ยนแปลง และจัดการ transaction ก่อนจะบันทึกลงฐานข้อมูลจริง การเรียก context.insert(expense)
หมายถึง การเพิ่ม object ใหม่เข้าสู่พื้นที่ทำงานของ context ส่วนการเรียก context.save() คือการยืนยันและ
บันทึกการเปลี่ยนแปลงเหล่านั้นลง persistent store

• @Query ทำหน้าที่เป็นกลไกเชื่อมโยงระหว่างฐานข้อมูลกับส่วนติดต่อผู้ใช้โดยตรง กล่าวได้ว่าเป็นตัวแทนของ
“คำร้องขอข้อมูลแบบประกาศ (declarative fetch request)” ที่ถูกผสานเข้ากับ lifecycle ของ SwiftUI เมื่อผู้
พัฒนาประกาศ @Query ใน view ระบบจะทำการดึงข้อมูลจาก persistent store และผูกผลลัพธ์เข้ากับ view
โดยอัตโนมัติ

ลักษณะสำคัญของ @Query คือผลลัพธ์ที่ได้เป็นข้อมูลแบบมีชีวิต (live data) หมายความว่า เมื่อข้อมูลในฐาน
ข้อมูลมีการเปลี่ยนแปลง ไม่ว่าจะเกิดจากการเพิ่ม แก้ไข หรือลบรายการ SwiftUI จะรีเฟรช view ที่ใช้ @Query
ทันทีโดยไม่ต้องเขียนโค้ดสังเกตการเปลี่ยนแปลงเอง แนวคิดนี้สะท้อนหลัก reactive data flow ที่เป็นหัวใจของ
SwiftUI

	 หลังจากทดลองทำกิจกรรมที่ 3.1 และ 3.2 แล้ว ผู้เรียนควรเห็นภาพชัดเจนว่า แม้หน้าตาของแอปจะคล้าย
กัน แต่ “พฤติกรรมของข้อมูล” แตกต่างกันโดยสิ้นเชิง ในโปรเจกต์ InMemoryDemo ซึ่งใช้ struct และ @State
ข้อมูลจะถูกเก็บไว้ในหน่วยความจำของแอประหว่างที่โปรแกรมกำลังทำงาน เมื่อหยุดรันแอป ข้อมูลในหน่วยความจำ
จะถูกล้าง ค่าในตัวแปรจึงหายไปทั้งหมด นี่คือสิ่งที่เรียกว่า In-memory Model

	 ในทางตรงกันข้าม โปรเจกต์ PersistentModelDemo ใช้ class ร่วมกับ @Model และ SwiftData ทำให้
ข้อมูลไม่ได้อยู่เพียงใน RAM แต่ถูกจัดการผ่าน ModelContext และถูกบันทึกลงใน persistent store เมื่อปิดและเปิด
แอปใหม่ ข้อมูลจึงยังคงอยู่ นี่คือ Persistent Model

	 ในส่วนนี้ ผู้สอนอธิบายต่อไปว่า การเปลี่ยนจาก struct ไปสู่ class ไม่ได้เกิดจากความสะดวกทางไวยากรณ์
แต่เกิดจากข้อกำหนดเชิงสถาปัตยกรรมของ SwiftData โดยสามารถอธิบายเหตุผลเชิงแนวคิด 3 ประการ ดังนี้:

1. Identity - ใน Persistent Model ข้อมูลหนึ่งรายการต้องมีตัวตนเดียวในระบบ การใช้ Reference
Semantics ของ class ช่วยให้ทุกส่วนของแอปอ้างอิงไปยัง object เดียวกันได้ เมื่อมีการแก้ไขข้อมูลในที่หนึ่ง
การเปลี่ยนแปลงจะสะท้อนในทุกที่ที่ใช้งานข้อมูลนั้น

2. Lifecycle Management - SwiftData ต้องสามารถติดตามการสร้าง การแก้ไข และการลบข้อมูลได้ การทำ
เช่นนี้จำเป็นต้องอาศัย object ที่มีตัวตนต่อเนื่อง ไม่ใช่ค่าที่ถูกคัดลอกไปมาแบบ Value Semantics

3. Consistency Across Views - ในระบบที่มีหลาย View เมื่อข้อมูลถูกแก้ไขใน View หนึ่ง การเปลี่ยนแปลงควร
ถูกสะท้อนไปยัง View อื่นโดยอัตโนมัติ การใช้ class และ Reference Semantics ช่วยให้ข้อมูลมีความ
สอดคล้องกันทั่วทั้งระบบ

	 ผู้สอนควรเน้นย้ำในตอนท้ายว่า แม้การใช้ class จะเป็นข้อกำหนดของ SwiftData framework แต่ในเชิง
แนวคิดแล้ว การตัดสินใจนี้สอดคล้องกับบทบาทใหม่ของข้อมูลในระดับระบบ นั่นคือ การยกระดับจากค่าชั่วคราว ไปสู่
ข้อมูลเชิงโดเมนที่มีอัตลักษณ์และวงจรชีวิตชัดเจน

กิจกรรมที่ 4: การเชื่อมโยง “แนวคิด” เข้ากับการพัฒนาแอปด้วย Xcode

ก่อนสร้างโปรเจกต์ ผู้สอนควรแสดงโครงสร้างโฟลเดอร์ของโปรเจกต์ให้ผู้เรียนเห็นก่อน และอธิบายว่าโครงสร้าง
ไฟล์สะท้อน “การแยกความรับผิดชอบ” ทางสถาปัตยกรรม

ExpenseTrackerApp/
│
├─ ExpenseTrackerApp.swift 	 // จุดเริ่มต้นของแอป และกำหนด SwiftData modelContainer

│
├─ Models/ 	 	

│ ├─ Expense.swift 	 // โมเดลรายจ่าย (Persistent Domain Model)

│ └─ Category.swift 	 // โมเดลหมวดหมู่ และความสัมพันธ์แบบ One-to-Many
│
├─ ViewModels/ 		

│ └─ ExpenseViewModel.swift 	 // ตัวกลางระหว่าง Model และ View จัดการ Create/Delete
│
└─ Views/
 ├─ ExpenseListView.swift 	 // แสดงรายการรายจ่ายทั้งหมดด้วย @Query

 ├─ ExpenseRowView.swift 	 // แสดงข้อมูลรายจ่ายหนึ่งรายการ

 ├─ AddExpenseView.swift 	 // หน้าสำหรับเพิ่มรายจ่ายใหม่

 └─ CategoryPickerView.swift 	 // เลือกหมวดหมู่โดยใช้ @Binding และ @Query

ขั้นตอนที่ 1
เริ่มต้นสร้างโปรเจกต์ iOS App ใน Xcode โดย
ตั้งชื่อว่า ExpenseTracker และกำหนดค่า
ต่างๆ ดังนี้
 - Interface: SwiftUI
 - Language: Swift
 - Storage: None (สามารถเพิ่ม
 SwiftData Framework ได้ภายหลัง)

ขั้นตอนที่ 2 สร้างโฟลเดอร์สำหรับจัดเก็บไฟล์ในโปรเจค ตามแนวคิด MVVM ดังนี้

• โฟลเดอร์ Models คือ Domain Layer
• โฟลเดอร์ ViewModels คือ Business Logic Layer
• โฟลเดอร์ Views คือ Presentation Layer

ขั้นตอนที่ 3 สร้างไฟล์โมเดลของประเภทรายจ่าย ตั้งชื่อว่า Category.swift ในโฟลเดอร์ Models และเขียนโค้ดดังนี้

import SwiftUI
import SwiftData

@Model
class Category {
 var name: String
 var expenses: [Expense] = []

 init(name: String) {
 self.name = name
 }
}

ขั้นตอนที่ 4 สร้างไฟล์โมเดลของรายจ่าย โดยตั้งชื่อว่า Expense.swift ในโฟลเดอร์ Models และเขียนโค้ดดังนี้

import SwiftUI
import SwiftData

@Model
class Expense {
 var amount: Double
 var date: Date
 var note: String?
 var category: Category?

 init(amount: Double, date: Date, note: String? = nil,
	 category: Category? = nil) {
 self.amount = amount
 self.date = date
 self.note = note
 self.category = category
 }
}

ผุ้สอนอธิบายว่า
• SwiftData จะทำหน้าที่เป็นตัวจัดการ persistence และ lifecycle ให้กับ Data Model ที่เราประกาศด้วย

@Model และใช้ class เพื่อรองรับ reference semantics โดย SwiftData จัดการ identity ให้โดยอัตโนมัติ
• Category และ Expense เป็น Entity ซึ่งมีความสัมพันธ์กันแบบ One-to-Many โดย [Expense] ซึ่งอยู่ในไฟล์

Category.swift คือ collection ของ Expense ที่สัมพันธ์กับ Category นี้
• SwiftData จะสร้าง inverse relationship ระหว่าง Category และ Expense เมื่อ Expense ถูกกำหนดค่า
category ระบบจะเพิ่ม Expense นั้นเข้าไปใน expenses ของ Category ให้อัตโนมัติ นี่คือความสามารถที่
ช่วยรักษา Consistency Across Objects

ขั้นตอนที่ 5 เพิ่ม .modelContainer ในไฟล์ ExpenseTrackerApp.swift ดังนี้

import SwiftUI
import SwiftData

@main
struct ExpenseTrackerApp: App {
 var body: some Scene {
 WindowGroup {
 ContentView()
 }
 .modelContainer(for: [Expense.self, Category.self])
 }
}

ในขณะสาธิต ควรเน้นยำให้ผู้เรียนเพิ่มคำสั่ง import SwiftData และอธิบายว่า .modelContainer ทำหน้าที่
กำหนดพื้นที่จัดเก็บข้อมูลถาวร และประกาศกับระบบว่า Model ใดบ้าง จะถูกจัดการโดย SwiftData

เพื่อให้เห็นภาพในการเพิ่มข้อมูล ผู้สอนอาจสาธิตการทำงานของ SwiftData ในไฟล์ ContentView.swift ดังนี้

import SwiftUI
import SwiftData

struct ContentView: View {

 @Environment(\.modelContext) private var context

 var body: some View {

 VStack {

 Button("Create Sample Data") {
 let (food, expense) = createSampleData()
 print("Expense Category:", expense.category?.name ?? "nil")
 print("Category Expense Count:", food.expenses.count)
 }
 }
 .padding()
 }

 private func createSampleData() -> (Category, Expense) {
 let food = Category(name: "Food")
 let expense = Expense(amount: 120, date: .now, note: "Lunch", category: food)

 context.insert(food)
 context.insert(expense)

 return (food, expense)
 }
}

โดยผู้สอนอธิบายการใช้คำสั่ง @Environment(\.modelContext) private var context ใน ContentView.swift ว่า
• @Environment ใน SwiftUI เป็น Property Wrapper ที่ใช้สำหรับดึง “ค่าบริบทของระบบ (environment

values)” เข้ามาใช้ใน View
• ModelContext คือ “ตัวกลาง” ที่เชื่อม View เข้ากับ ModelContainer

 ปุ่ม Button(“Create Sample Data”) ทำหน้าที่ในการสร้างข้อมูลตัวอย่างผ่านการเรียกใช้เมธอด
createSampleData() โดยจะคืนค่า Category และ Expense กลับไป และพิมพ์ผลลัพธ์ออกมา ดังนี้

Expense Category: Food
	 Category Expense Count: 1

ขั้นตอนที่ 6 สร้างไฟล์ ExpenseViewModel.swift ในโฟลเดอร์ ViewModels และเขียนโค้ดดังนี้

import SwiftData
import SwiftUI

@Observable
class ExpenseViewModel {

 private let context: ModelContext

 // UI State
 var isSaving = false
 var errorMessage: String?

 init(context: ModelContext) {
 self.context = context
 }

 // MARK: - Commands
 func addExpense(amount: Double, note: String?, category: Category?) {

 isSaving = true

 let expense = Expense(amount: amount,
 date: .now,
 note: note,
 category: category)

 context.insert(expense)

 do {
 try context.save()

 } catch {
 errorMessage = "Failed to save expense"
 }

 isSaving = false
 }

 func deleteExpense(_ expense: Expense) {
 context.delete(expense)

 do {
 try context.save()
 } catch {
 errorMessage = "Failed to delete expense"
 }
 }

 // MARK: - Initial Data

 func setupInitialData(categories: [Category], expenses: [Expense]) {

 let defaultCategoryNames = ["Food",
	 	 	 	 	 	 "Transport",
	 	 	 	 	 	 "Shopping",
	 	 	 	 	 	 "Bills",
	 	 	 	 	 	 "Entertainment"]

 var foodCategory: Category?

 for name in defaultCategoryNames {
 if let existing = categories.first(where: { $0.name == name }) {
 if name == "Food" { foodCategory = existing }
 } else {
 let newCategory = Category(name: name)
 context.insert(newCategory)
 if name == "Food" { foodCategory = newCategory }
 }
 }

 if expenses.isEmpty, let foodCategory {
 let sample = Expense(
 amount: 120,
 date: .now,
 note: "Lunch",
 category: foodCategory
)
 context.insert(sample)
 }

 try? context.save()
 }
}

ผู้สอนควรอธิบายว่า
• การใช้ @Observable ทำให้ ViewModel สามารถแจ้ง View ได้ หากค่า (state) ภายใน เช่น isSaving

หรือ errorMessage มีการเปลี่ยนแปลง นี่คือ กลไกที่ทำให้ SwiftUI อัปเดต UI อัตโนมัติ
• การกำหนด ตัวแปร isSaving และ errorMessage เพื่อใช้สำหรับการตรวจสอบสถานะการทำงานของ

ของระบบ โดยสามารถนำไปใช้ในการจัดการสถนะของ UI เช่น การปิดการโต้ตอบของผู้ใช้ การแสดง
loading indicator หรือการแสดงข้อความ error บน AlertBox เป็นต้น

• คำสั่ง private let context: ModelContext ไม่ได้เป็นการสร้าง ModelContext ใหม่ แต่เป็นการประกาศ
ตัวแปร context เพื่อใช้อ้างอิงถึง ModelContext ที่ถูกส่งเข้ามาจาก SwiftData ผ่าน View โดย
ModelContext นี้ ใช้เป็นตัวกลางในการสร้าง ลบ และบันทึกข้อมูลใน ModelContainer ของแอป

• เมธอด addExpense, deleteExpense และ setupInitialData เป็นตัวแทนของการกระทำต่อข้อมูลใน
ระบบ โดย ViewModel ทำหน้าที่เป็นชั้นที่ควบคุมการสร้าง ลบ และเตรียมข้อมูลเริ่มต้นผ่าน
ModelContext การออกแบบลักษณะนี้ช่วยให้ View ไม่ต้องจัดการ persistence โดยตรง ทำให้โค้ดมี
โครงสร้างชัดเจน รองรับการขยายระบบ และสอดคล้องกับสถาปัตยกรรม MVVM

ขั้นตอนที่ 7 สร้าง View ชื่อ ExpenseListView และ ExpenseRowView เพื่อแสดงรายการทั้งหมดจาก SwiftData
ผ่าน @Query

คำสั่งในไฟล์ ExpenseListView.swift

import SwiftUI
import SwiftData

struct ExpenseListView: View {

 // MARK: - Environment
 @Environment(\.modelContext) private var context

 // MARK: - Data Queries
 @Query(sort: \Expense.date, order: .reverse)
 private var expenses: [Expense]
 @Query
 private var categories: [Category]

 // MARK: - UI State
 @State private var showingAddExpenseView = false

 var body: some View {
 NavigationStack {
 List {
 ForEach(expenses) { expenseItem in
 ExpenseRowView(expense: expenseItem)
 }
 .onDelete { indexSet in
 let viewModel = ExpenseViewModel(context: context)
 indexSet.map { expenses[$0] }
 .forEach { viewModel.deleteExpense($0) }
 }
 }
 .navigationTitle("Expenses")

 // MARK: - Toolbar
 .toolbar {
 ToolbarItem(placement: .topBarTrailing) {
 Button {
 showingAddExpenseView = true
 } label: {
 Image(systemName: "plus")
 }
 }
 }

 // MARK: - Sheet
 .sheet(isPresented: $showingAddExpenseView) {
 AddExpenseView(viewModel: ExpenseViewModel(context: context))
 }
 }

 // MARK: - Initial Data Setup
 .task {
 let viewModel = ExpenseViewModel(context: context)
 viewModel.setupInitialData(categories: categories,
	 	 	 	 	 	 	 expenses: expenses)
 }
 }
}

คำสั่งในไฟล์ ExpenseRowView.swift

import SwiftUI

struct ExpenseRowView: View {

 let expense: Expense

 var body: some View {
 VStack(alignment: .leading) {
 Text(expense.amount, format: .currency(code: "THB"))
 .font(.headline)

 Text(expense.category?.name ?? "No Category")
 .font(.caption)
 .foregroundStyle(.secondary)

 Text(expense.date.formatted(date: .abbreviated, time:.shortened))
 .font(.caption2)
 }
 }
}

เริ่มจากการอธิบายก่อนว่า ExpenseListView มีบทบาทเป็น “หน้าจอหลัก” ที่แสดงรายการรายจ่ายทั้งหมด โดยไม่
ได้สร้างหรือจัดเก็บข้อมูลเอง แต่ดึงข้อมูลจาก SwiftData ผ่าน @Query และมีการใช้ .task ซึ่งจะทำงานเมื่อ
ExpenseListView ปรากฏบนจอภาพ สำหรับสร้าง Sample Data ผ่านฟังกชัน setupInitialData ของ
ViewModel

• คำสั่ง @Environment(\.modelContext) private var context เป็นการดึง ModelContext จากระบบ
SwiftData ผ่าน Environment มาใช้ใน View นี้

• ส่วนของการ Qury ทำหน้าที่ในการดึงข้อมูลจาก SwiftData persistence store มาให้ View ใช้โดยอัตโนมัติ

ผู้สอนอาจอธิบายเพิ่มเติมในรายละเอียดเกี่ยวกับการใช้ @Query ดังนี้
@Query เป็น Property Wrapper ใน SwiftData ที่ทำหน้าที่ดึงข้อมูลจาก ModelContainer โดยอัตโนมัติ
และผูกผลลัพธ์เข้ากับ SwiftUI View ในลักษณะ reactive data flow เมื่อข้อมูลใน persistent store มีการ
เปลี่ยนแปลง เช่น การเพิ่ม ลบ หรือแก้ไขข้อมูล SwiftUI จะทำการ re-render View ที่ใช้ @Query โดย
อัตโนมัติ ในเชิงสถาปัตยกรรมจึงกล่าวได้ว่า @Query ทำหน้าที่เป็นกลไกเชื่อมโยงข้อมูลระหว่าง persistence
layer และ View layer โดยทำให้ View สามารถเข้าถึงข้อมูลจาก SwiftData ในรูปแบบ collection ที่ bind กับ
UI ได้โดยตรง

โดยรูปแบบพื้นฐานของการใช้ @Query คือ @Query private var expenses: [Expense] และสามารถใช้ร่วม
กับการ sort และ filter ได้ ดังนี้

@Query(sort: \Expense.date, order: .reverse)
private var expenses: [Expense]

@Query(filter: #Predicate<Expense> { $0.amount > 100 })
private var expenses: [Expense]

@Query(filter: #Predicate<Expense> { $0.amount > 0 },
 sort: \Expense.date,
 order: .reverse)
private var expenses: [Expense]

• ตัวแปร showingAddExpenseView ทำหน้าที่เก็บสถานะว่า หน้าจอสำหรับเพิ่มรายจ่ายควรถูกแสดงหรือไม่
• ในส่วนของการแสดงผล โครงสร้างเริ่มต้นด้วย NavigationStack ซึ่งทำหน้าที่กำหนดบริบทของการนำทาง
ภายในหน้าจอ ทำให้ View นี้สามารถแสดงชื่อหน้าด้านบน และรองรับการนำทางไปยัง View อื่นในอนาคตได้
เช่น หน้ารายละเอียดหรือหน้าสร้างข้อมูลใหม่

• ภายใน NavigationStack มีการใช้ List เพื่อแสดงข้อมูลในรูปแบบรายการแนวตั้ง ซึ่งเป็นรูปแบบที่เหมาะสมกับ
ข้อมูลประเภท collection อย่างรายจ่าย โดย List จะทำหน้าที่จัดการ layout การเลื่อนหน้าจอ การแบ่งแถว และ
พฤติกรรมพื้นฐานของรายการให้โดยอัตโนมัติ ทำให้ผู้พัฒนาไม่ต้องจัดการรายละเอียดเชิงกลไกของ UI ด้วย
ตนเอง

• การนำข้อมูลจาก SwiftData มาแสดงผลเกิดขึ้นผ่านคำสั่ง ForEach(expenses) ซึ่งรับข้อมูลจากตัวแปร
expenses ที่ถูกดึงมาจาก persistence ด้วย @Query โดยคำสั่ง ForEach จะทำหน้าที่วนผ่านข้อมูลรายจ่ายที
ละรายการ และส่งข้อมูลแต่ละหน่วยไปยัง ExpenseRowView เพื่อสร้าง UI สำหรับแถวนั้นโดยเฉพาะ

• ExpenseRowView มีบทบาทสำคัญในฐานะ View ย่อยที่ทำหน้าที่แสดงข้อมูลของรายจ่ายหนึ่งรายการโดย
เฉพาะ การแยก Row View ออกเป็นคอมโพเนนต์เฉพาะช่วยให้โค้ดมีความชัดเจนและสามารถนำกลับมาใช้ซ้ำได้
นอกจากนี้ยังช่วยให้ View หลักไม่ต้องรับผิดชอบรายละเอียดของการจัดรูปแบบข้อมูลแต่ละรายการ ส่งผลให้
โครงสร้างของหน้ารายการอ่านง่ายและดูแลรักษาได้สะดวกขึ้น

ผู้สอนควรเปลี่ยนมุมมองไปที่ ExpenseRowView ซึ่งเป็น
หน่วยย่อยของ Presentation Layer เพื่ออธิบายถึงรูปแบบ
ในการนำเสนอข้อมูลบนจอภาพ

การกำหนดรูปแบบด้วยคำสั่ง date: .abbreviated คือ การ
กำหนดรูปแบบวันที่แบบย่อ ตามการตั้งค่าภาษาของเครื่อง

• เมื่อข้อมูลใน SwiftData เปลี่ยนแปลง ไม่ว่าจะเป็นการเพิ่ม ลบ หรือแก้ไขรายการ ตัวแปร expenses จะถูกอัปเดต
โดยอัตโนมัติผ่านกลไก reactive ของ SwiftData และ SwiftUI ทำให้ ForEach สร้าง UI ใหม่ตามข้อมูลล่าสุด
ทันทีโดยไม่ต้องเขียนโค้ดรีเฟรชหน้าจอเอง นี่คือจุดสำคัญที่ทำให้การแสดงข้อมูลผ่าน ExpenseRowView มี
ความสอดคล้องกับสถานะจริงของระบบอยู่เสมอ

• นอกจากนี้ List ยังรองรับการลบข้อมูลผ่านการปัด (swipe to delete) โดยคำสั่ง .onDelete จะได้รับตำแหน่ง
ของรายการที่ถูกลบ จากนั้น View จะสร้าง ViewModel และเรียกใช้เมธอด deleteExpense เพื่อจัดการการลบ

ข้อมูลใน persistence อย่างเป็นระบบ การออกแบบนี้ทำให้ View ไม่ต้องจัดการฐานข้อมูลโดยตรง แต่ส่งต่อ
การกระทำไปยัง ViewModel ซึ่งเป็นไปตามแนวคิด MVVM ที่แยกตรรกะของข้อมูลออกจากการแสดงผล

• ส่วนของ toolbar และ sheet ทำหน้าที่เสริมให้หน้ารายการสามารถเปิดหน้าสำหรับเพิ่มข้อมูลใหม่ได้ โดยใช้
state เป็นตัวควบคุมการแสดงผลของหน้าต่างย่อย แสดงให้เห็นว่า UI ใน SwiftUI ถูกกำหนดโดยสถานะของ
ระบบ ไม่ใช่การเรียกคำสั่งนำเสนอหน้าจอแบบลำดับขั้น

• ในตอนท้ายของโครงสร้าง View มีการใช้ตัวปรับแต่ง .task เพื่อกำหนดงานที่ควรถูกดำเนินการเมื่อ View
ปรากฏขึ้นบนหน้าจอ คำสั่งนี้ทำหน้าที่เป็นจุดเริ่มต้นของกระบวนการเตรียมระบบให้พร้อมใช้งาน โดยเฉพาะใน
กรณีที่แอปเพิ่งถูกเปิดครั้งแรกหรือยังไม่มีข้อมูลในฐานข้อมูล

• ภายใน .task มีการสร้างอ็อบเจกต์ของ ExpenseViewModel โดยส่ง ModelContext เข้าไปผ่าน initializer
การกระทำนี้สะท้อนแนวคิดของ Dependency Injection ซึ่งทำให้ ViewModel สามารถเข้าถึงระบบจัดเก็บ
ข้อมูลของ SwiftData ได้โดยไม่ต้องสร้าง context เอง ส่งผลให้การจัดการข้อมูลยังคงอยู่ภายใต้โครงสร้าง
สถาปัตยกรรมที่ชัดเจน คือ View ทำหน้าที่สั่งงาน ส่วน ViewModel ทำหน้าที่จัดการข้อมูล

• เมื่อได้ ViewModel แล้ว View จะเรียกใช้เมธอด setupInitialData พร้อมส่งรายการ categories และ expenses
ที่ดึงมาจาก SwiftData ผ่าน @Query เข้าไป เมธอดนี้มีหน้าที่ตรวจสอบว่าระบบมขี้อมูลพื้นฐานอยู่แล้วหรือไม่
หากยังไม่มี ก็จะสร้างหมวดหมู่เริ่มต้นและข้อมูลตัวอย่างขึ้นมา การออกแบบลักษณะนีช้่วยให้แอปไม่เริ่มต้นจาก
หน้าว่าง

ขั้นตอนที่ 8 สร้าง View ชื่อ AddExpenseView และ CategoryPickerView เพื่อการเพิ่มข้อมูลรานการรายจ่ายใหม่

คำสั่งในไฟล์ AddExpenseView.swift

import SwiftUI

struct AddExpenseView: View {

 let viewModel: ExpenseViewModel

 @State private var amountText: String = ""
 @State private var note: String = ""
 @State private var selectedCategory: Category?

 @Environment(\.dismiss) private var dismiss

 var body: some View {
 NavigationStack {
 Form {
 Section("Amount") {
 TextField("Enter amount", text: $amountText)
 .keyboardType(.decimalPad)
 }
 Section("Note") {
 TextField("Enter note",text: $note)
 }
 Section("Category") {
 CategoryPickerView(
 selectedCategory: $selectedCategory
)
 }
 }
 .navigationTitle("Add Expense")

 .toolbar {
 ToolbarItem(placement: .confirmationAction) {
 Button("Save") {
 saveExpense()
 }
 .disabled(!isValid || viewModel.isSaving)
 }

 ToolbarItem(placement: .cancellationAction) {
 Button("Cancel") {
 dismiss()
 }
 }
 }
 }
 }
}

extension AddExpenseView {

 private var isValid: Bool {
 Double(amountText) != nil
 }

 private func saveExpense() {

 guard let amount = Double(amountText) else { return }

 viewModel.addExpense(
 amount: amount,
 note: note.isEmpty ? nil : note,
 category: selectedCategory
)

 dismiss()
 }
}

คำสั่งในไฟล์ CategoryPickerView.swift

import SwiftUI
import SwiftData

struct CategoryPickerView: View {

 @Query private var categories: [Category]
 @Binding var selectedCategory: Category?

 var body: some View {
 Picker("Category", selection: $selectedCategory) {
 ForEach(categories) { category in
 Text(category.name)
 .tag(category as Category?)
 }
 }
 }
}

• AddExpenseView ทำหน้าที่เป็นหน้าจอสำหรับสร้างข้อมูลรายจ่ายใหม่ในระบบ หน้าที่หลักของ View นี้ คือ
รวบรวมข้อมูลจากผู้ใช้ แปลงข้อมูลให้อยู่ในรูปแบบที่เหมาะสม และส่งต่อไปยัง ViewModel เพื่อการเพิ่มข้อมูล
รายการรายจ่ายใหม่

• ภายใน View มีการประกาศตัวแปร viewModel เพื่อใช้เป็นตัวกลางในการติดต่อกับชั้นข้อมูล การออกแบบ
ลักษณะนี้ช่วยแยกความรับผิดชอบอย่างชัดเจน กล่าวคือ View ทำหน้าที่รวบรวมข้อมูลจากผู้ใช้ ส่วน
ViewModel ทำหน้าที่สร้างและบันทึกข้อมูลในระบบ

• ตัวแปรที่ประกาศด้วย @State ได้แก่ amountText, note และ
selectedCategory เป็นตัวแทนของ UI State ซึ่งมีชีวิตอยู่เฉพาะระหว่าง
การแสดงหน้าจอนี้เท่านั้น ข้อมูลเหล่านี้ยังไม่ใช่ Domain Model แต่เป็น
เพียงค่าที่ผู้ใช้กำลังกรอกอยู่

• คำสั่ง @Environment(\.dismiss) private var dismiss คือ กลไกที่ใช้
ดึง action สำหรับการปิด View ปัจจุบันจากบริบทของ SwiftUI โดยไม่
ต้องพึ่งพาการส่ง closure จาก parent View การออกแบบลักษณะนี้
ช่วยลด coupling ระหว่าง View ทำให้ View สามารถจัดการ lifecycle
ของตัวเองได้อย่างอิสระ

• ภายใน body มีการใช้ NavigationStack เพื่อกำหนดบริบทของหน้าจอ และใช้ Form เพื่อจัดวางช่องกรอก
ข้อมูลในลักษณะที่เหมาะสมกับการป้อนข้อมูลของผู้ใช้ ฟอร์มถูกแบ่งเป็นส่วนย่อย ได้แก่ จำนวนเงิน หมายเหตุ
และหมวดหมู่ โดยส่วนของหมวดหมู่ใช้ CategoryPickerView ซึ่งเป็น View ย่อยที่ดึงข้อมูลหมวดจาก
SwiftData และส่งค่าที่เลือกกลับมาผ่าน Binding การออกแบบนี้ช่วยให้ View หลักไม่ต้องจัดการรายละเอียด
ของ Picker เอง

• CategoryPickerView เป็น View ย่อยที่ถูกออกแบบให้มีหน้าที่เฉพาะ คือ การแสดงรายการหมวดหมู่ให้ผู้ใช้
เลือก การแยก Picker ออกมาเป็นคอมโพเนนต์เฉพาะช่วยลดความซับซ้อนของ AddExpenseView และทำให้
โค้ดมีความเป็นโมดูลมากขึ้น

• คำสั่ง @Query private var categories: [Category] ทำหน้าที่ดึงข้อมูลหมวดหมู่จาก SwiftData
• คำสั่ง @Binding var selectedCategory: Category? แสดงให้เห็นว่า View นี้ไม่ได้เป็นเจ้าของค่าที่เลือก
แต่ได้รับสิทธิ์ในการอ่านและแก้ไขค่าที่อยู่ใน View อื่น ค่าจริงของ selectedCategory นั้นถูกเก็บใน
AddExpenseView (ผ่าน @State) ส่วน CategoryPickerView แค่ผูกตัวเองเข้ากับค่านั้น ดังนั้น ค่าที่ถูก
ผู้ใช้เลือกจาก Picker จะถูกส่งกลับไปยัง AddExpenseView

• extension ในภาษา Swift คือ กลไกที่ใช้ ขยายความสามารถของชนิดข้อมูล (type) โดยไม่ต้องแก้ไขนิยาม
เดิมของชนิดนั้น การแยก isValid และ saveExpense ไปไว้ใน extension ช่วยสร้างความชัดเจนระหว่าง
“โครงสร้างของหน้าจอ” กับ “พฤติกรรมของหน้าจอ” กล่าวคือ ภายใน struct หลักจะเห็นเฉพาะการจัดวาง UI
และการเชื่อมโยง state ขณะที่ extension ทำหน้าที่รวบรวมพฤติกรรมที่เกี่ยวข้องกับการตรวจสอบและการ
บันทึกข้อมูล การจัดวางเช่นนี้สอดคล้องกับหลัก Separation of Concern ซึ่งมุ่งแยกความรับผิดชอบของ
แต่ละส่วนออกจากกันอย่างชัดเจน

• เมื่อผู้ใช้กดปุ่ม Save ฟังก์ชัน saveExpense จะทำหน้าที่ตรวจสอบความถูกต้องของข้อมูล ผ่านคำสั่ง guard
let amount = Double(amountText) else { return } จากนั้น จึงเรียกใช้ viewModel.addExpense(...) เพื่อ
สร้าง Domain Model ตัวจริง และบันทึกลง SwiftData ผ่าน ModelContext

• การควบคุมการแสดงสถานะของปุ่ม Save
• ตัวแปร isValid เป็น computed property ที่ตรวจสอบว่า ค่าที่ผู้ใช้กรอกสามารถแปลงเป็นตัวเลขได้หรือไม่
หากข้อมูลไม่ถูกต้อง ปุ่มจะถูกปิดการใช้งานทันที นี่คือ การทำ validation ในระดับ UI เพื่อป้องกันข้อผิด
พลาดก่อนส่งข้อมูลเข้าสู่ระบบ

• viewModel.isSaving เป็นตัวแปรนี้สะท้อนสถานะการทำงานของระบบจาก ViewModel หากกำลังบันทึก
ข้อมูลอยู่ ปุ่ม Save จะถูกปิดการใช้งานชั่วคราว เพื่อป้องกันการกดซ้ำ ซึ่งอาจนำไปสู่การสร้างข้อมูลซ้ำ
หรือเกิดความไม่สอดคล้องของข้อมูล

• การเรียก dismiss() หลังจากบันทึกสำเร็จแสดงให้เห็นว่า View ทำหน้าที่เพียงควบคุมการแสดงผลของหน้าจอ
ไม่ได้เกี่ยวข้องกับการจัดการข้อมูลในระดับ persistence

	 การพัฒนาแอปในโปรเจกต์นี้ไม่ได้มุ่งเน้นเพียงการสร้างหน้าจอหรือทำให้โค้ดทำงานได้เท่านั้น แต่เน้นการ
ทำความเข้าใจโครงสร้างของข้อมูล การไหลของข้อมูล และการจัดวางความรับผิดชอบของแต่ละส่วนในระบบอย่าง
เป็นระบบ หัวใจสำคัญของการออกแบบแอปด้วย SwiftUI อยู่ที่การเข้าใจความสัมพันธ์ระหว่าง Data Flow, State
และ Model โดย Model ทำหน้าที่แทนข้อมูลเชิงโดเมนที่มีความหมายในระยะยาว ขณะที่ State เป็นตัวแทนของสถานะ
ปัจจุบันที่ควบคุมการแสดงผลของ UI ความเข้าใจความแตกต่างระหว่างสองสิ่งนีช้่วยให้ผู้พัฒนาสามารถออกแบบ
ระบบที่แยกความรับผิดชอบได้ชัดเจน ลดการผูกติดระหว่างข้อมูลกับหน้าจอ และทำให้โค้ดมีความยืดหยุ่นมากขึ้น

ขั้นสรุปบทเรียน (Conclusion)

	 การสรุปบทเรียนในหัวข้อ Data Modeling & SwiftData ไม่ควรเป็นเพียงการทบทวนคำสั่งหรือขั้นตอน
ทางเทคนิค หากควรมุ่งสะท้อน “กระบวนการคิด” ที่ผู้เรียนได้พัฒนาขึ้นตลอดกิจกรรม โดยเฉพาะการเปลี่ยนผ่าน
จากแนวคิดแบบ UI-Driven ไปสู่ Data-Driven ภายใต้กรอบ Thinking in Data ประเด็นสำคัญที่ควรเน้นย้ำคือ การ
ออกแบบระบบที่ดีเริ่มต้นจากความเข้าใจข้อมูล ไม่ใช่เริ่มจากการออกแบบหน้าจอ

	 ผู้สอนสามารถเริ่มต้นการสรุปด้วยคำถามสะท้อน เช่น “ในช่วงต้นคาบ เราเริ่มต้นคิดถึงอะไรเป็นอันดับแรก
— หน้าจอ หรือ ข้อมูล?” และ “เมื่อเราถูกถามว่า ‘ระบบต้องจัดการข้อมูลอะไร’ ความคิดของเราเปลี่ยนไปอย่างไร?”
การย้อนกลับไปยังช่วง Warm-up ซึ่งผู้เรียนมักตอบในมุมมองของ UI ก่อนจะค่อย ๆ ปรับมุมมองไปสู่การวิเคราะห์
Entity, Attribute และ Relationship จะช่วยทำให้เห็นพัฒนาการทางความคิดอย่างชัดเจน การออกแบบ
โครงสร้างข้อมูลของแอปโดยการสร้างโมเดลของ Expense และ Category ไม่ได้เกิดจากการคาดเดาเชิงเทคนิค แต่
เกิดจากการวิเคราะห์โลกจริง เช่น เหตุการณ์การใช้จ่าย จำนวนเงิน วันที่ และหมวดหมู่ ซึ่งสะท้อนกระบวนการสร้าง
Conceptual Data Model อย่างเป็นระบบ

	 การทดลองสร้างโปรเจกต์ InMemoryDemo และ PersistentModelDemo ทำให้ผู้เรียนตระหนักอย่าง
ชัดเจนว่า “พฤติกรรมของข้อมูล” ไม่ได้ขึ้นอยู่กับหน้าตาของแอปหรือโค้ด UI หากขึ้นอยู่กับบทบาทที่ข้อมูลถูก
ออกแบบให้มีในระบบ

• ในกรณีของ In-memory Model ข้อมูลมีชีวิตอยู่เพียงในหน่วยความจำ (RAM) ระหว่างที่แอปกำลังทำงาน
ไม่มีการจัดเก็บถาวร ไม่มีระบบติดตามวงจรชีวิตของอ็อบเจกต์ และไม่มี identity ในระดับระบบ รูปแบบนี้เหมาะ
สำหรับ UI State หรือข้อมูลชั่วคราว แต่ไม่เหมาะสำหรับข้อมูลเชิงโดเมนทีต่้องคงอยู่ระยะยาว

• ในทางตรงกันข้าม การจัดเก็บข้อมูลแบบ Persistent Model โดยใช้ class ร่วมกับ @Model และ SwiftData
แสดงให้เห็นว่า ข้อมูลไม่ได้เป็นเพียงค่าที่อยู่ในตัวแปรอีกต่อไป แต่ถูกยกระดับเป็น Persistent Domain
Object ที่มี identity มี lifecycle และถูกจัดการผ่าน ModelContext ภายใต้กลไก persistence ของ
SwiftData เพื่อรองรับการเก็บข้อมูลในระยะยาว

	 ในกระบวนการพัฒนา ผู้เรียนได้เห็นบทบาทของเครื่องมือสำคัญใน SwiftUI ได้แก่ @State ซึ่งใช้เก็บสถานะ
ภายใน View, @Binding ซึ่งใช้เชื่อม State ระหว่าง View ต่าง ๆ และ @Observable ซึ่งช่วยให้ ViewModel
สามารถแจ้งเตือน View เมื่อสถานะภายในเปลี่ยนแปลง กลไกเหล่านี้ทำงานร่วมกันเพื่อสร้างการไหลของข้อมูลแบบ
ทิศทางเดียว (Unidirectional Data Flow) ซึ่งเป็นหลักการสำคัญของสถาปัตยกรรมสมัยใหม่

	

	 ขณะเดียวกัน การนำ SwiftData มาใช้ทำให้ Data Model ถูกยกระดับจากข้อมูลชั่วคราวในหน่วยความจำไป
สู่ Persistent Domain Object ที่มีตัวตนในระบบจริง ผู้เรียนจึงได้เข้าใจว่า การเลือกใช้ class และ @Model ไม่ได้เป็น
เพียงข้อกำหนดของ framework แต่เป็นการตัดสินใจเชิงแนวคิดที่เกี่ยวข้องกับ identity, lifecycle และความ
สอดคล้องของข้อมูลในระดับแอปพลิเคชัน

	 เมื่อเชื่อม SwiftUI กับ SwiftData ผ่าน @Query และ ModelContext ระบบจึงสามารถแสดงผลข้อมูลและ
ตอบสนองต่อการเปลี่ยนแปลงได้โดยอัตโนมัติ โดย View ทำหน้าที่แสดงผล ViewModel ทำหน้าที่จัดการการกระทำ
ต่อข้อมูล และ Model ทำหน้าที่แทนโครงสร้างของข้อมูลจริง การจัดวางบทบาทลักษณะนี้สะท้อนสถาปัตยกรรม
MVVM อย่างชัดเจน และช่วยให้โค้ดมีความเป็นระเบียบ อ่านง่าย และสามารถขยายต่อในอนาคตได้อย่างมั่นคง

	 กล่าวโดยสรุป บทเรียนนี้ไม่ได้มุ่งให้ผู้เรียนเพียง “เขียนโค้ดได้” หากมุ่งให้ผู้เรียนเข้าใจว่าการออกแบบข้อมูล
คือรากฐานของการออกแบบระบบ และการตัดสินใจเกี่ยวกับ Data Model คือการตัดสินใจเชิงสถาปัตยกรรมที่
กำหนดศักยภาพของแอปในระยะยาว

คำถามเพื่อการสะท้อนผลการเรียนรู้จากการทำกิจกรรม
1. อธิบายความหมายของแนวคิด Thinking in Data และอธิบายว่ามุมมองของคุณต่อการเริ่มต้นพัฒนาแอป

เปลี่ยนไปอย่างไรหลังทำกิจกรรมนี้
2. อธิบายความแตกต่างระหว่างการออกแบบแอปแบบ UI-Driven กับ Data-Driven พร้อมยกตัวอย่างจาก

กิจกรรม
3. อธิบายความแตกต่างระหว่าง Value Semantics และ Reference Semantics พร้อมยกตัวอย่างประกอบ
4. อธิบายความแตกต่างระหว่าง In-memory Model และ Persistent Model พร้อมยกตัวอย่างประกอบ
5. คำว่า identity ของข้อมูลในบริบทของ SwiftData หมายถึงอะไร และเหตุใดจึงสำคัญ
6. การแยกไฟล์เป็น Models, ViewModels และ Views ช่วยให้ระบบขยายต่อได้อย่างไร
7. จากกิจกรรมทั้งหมด คุณคิดว่าการออกแบบ Data Model มีผลต่อความยั่งยืนของระบบในระยะยาวอย่างไร

คำศัพท์สำคัญ

Object-Relational Mapping (ORM)
แนวคิดและเทคนิคในการเชื่อมโยงโลกของ อ็อบเจกต์ในโปรแกรมเชิงวัตถุ (Object-Oriented Programming) เข้า
กับ โครงสร้างข้อมูลแบบฐานข้อมูลเชิงสัมพันธ์ (Relational Database) เพื่อให้นักพัฒนาสามารถทำงานกับ
ข้อมูลในรูปแบบของอ็อบเจกต์ แทนการเขียนคำสั่ง SQL โดยตรง

Data Model
โครงสร้างเชิงนามธรรมที่ใช้แทนข้อมูลในโลกจริง โดยกำหนดชนิดข้อมูล (Entity), คุณลักษณะ (Attribute) และ
ความสัมพันธ์ (Relationship) เพื่อให้ระบบสามารถจัดเก็บและจัดการข้อมูลได้อย่างมีความหมาย

Domain Model
โมเดลที่แทนแนวคิดหลักของระบบ ซึ่งสะท้อนถึงสิ่งที่มีอยู่จริงในระบบ ความสัมพันธ์ระหว่างสิ่งเหล่านั้น และความ
หมายของข้อมูลในเชิงธุรกิจ

Predicate
เงื่อนไขเชิงตรรกะที่ใช้ตรวจสอบว่า “ข้อมูลหนึ่งรายการตรงตามเงื่อนไขหรือไม่” โดยผลลัพธ์ของ predicate จะเป็น
ค่าแบบบูลีน คือ จริง (true) หรือ เท็จ (false) ใน SwiftData predicate ถูกใช้กับ @Query เพื่อระบวุ่า ต้องการดึง
ข้อมูลแบบไหนจาก persistent store

In-memory Model
รูปแบบการจัดเก็บข้อมูลที่มีชีวิตอยู่เฉพาะในหน่วยความจำ (RAM) ระหว่างที่โปรแกรมทำงาน ไม่มีการจัดเก็บถาวร
และไม่มีการจัดการวงจรชีวิตในระดับระบบ

Persistent Model
แบบจำลองข้อมูลที่ถูกจัดเก็บอย่างถาวรในระบบจัดเก็บข้อมูล (persistent store) มี identity ระยะยาว และมีการ
จัดการ lifecycle อย่างเป็นระบบ

Identity
คุณลักษณะที่ทำให้อ็อบเจกต์หนึ่งสามารถถูกระบุว่าเป็น “ตัวเดิม” แม้ค่าภายในจะเปลี่ยนแปลง เป็นแนวคิดสำคัญใน
ระบบ persistence และ reference semantics

Value Semantics
รูปแบบการทำงานของข้อมูลที่เมื่อถูกกำหนดให้ตัวแปรใหม่ จะเกิดการคัดลอกค่า (copy) ทำให้แต่ละตัวแปรเป็นอิสระ
จากกัน (พบใน struct)

Reference Semantics
รูปแบบการทำงานที่ตัวแปรหลายตัวสามารถอ้างอิงอ็อบเจกต์เดียวกันได้ การเปลี่ยนแปลงผ่านตัวแปรหนึ่งจะสะท้อน
ในทุกตัวแปรที่อ้างอิง (พบใน class)

ModelContext
ตัวกลางที่ใช้จัดการการสร้าง บันทึก แก้ไข และลบข้อมูลใน SwiftData ทำหน้าที่คล้าย transaction layer ของระบบ
persistence

Inverse Relationship
ความสัมพันธ์สองทิศทางที่ระบบจัดการความสอดคล้องของข้อมูลให้อัตโนมัติ เช่น เมื่อ Expense ถูกผูกกับ
Category ระบบจะอัปเดตฝั่ง Category ให้สอดคล้องกัน

State
ข้อมูลที่สะท้อน “สถานะปัจจุบัน” ของ UI มักมีอายุสั้นและเปลี่ยนแปลงตามการโต้ตอบของผู้ใช้
Unidirectional Data Flow

แนวคิดที่ข้อมูลไหลในทิศทางเดียวจากแหล่งข้อมูล (Source of Truth) ไปยัง UI ลดความซับซ้อนและปัญหาความไม่
สอดคล้องของข้อมูล

Separation of Concern
หลักการออกแบบซอฟต์แวร์ที่แยกความรับผิดชอบของแต่ละส่วนออกจากกันอย่างชัดเจน เช่น แยก Model, View
และ ViewModel

Single Source of Truth
หลักการที่กำหนดให้ข้อมูลหนึ่งค่ามีเจ้าของเพียงจุดเดียวในระบบ และ View อื่นเข้าถึงผ่าน Binding หรือกลไกที่
ควบคุมได้

@Model
Macro ใน SwiftData ที่ใช้ประกาศว่า class หนึ่งเป็น Persistent Domain Object ซึ่งจะถูกจัดการ identity และ
lifecycle โดยระบบ

@Query
กลไกการดึงข้อมูลเชิงประกาศ (Declarative Data Access) ใน SwiftData ที่ทำให้ View สามารถเข้าถึงข้อมูลจาก
persistent store ได้โดยอัตโนมัติ

@State
Property wrapper ใน SwiftUI สำหรับเก็บสถานะภายใน View ซึ่งมีชีวิตอยู่เท่ากับ lifecycle ของ View

@Binding
กลไกที่ใช้เชื่อมโยง State ระหว่าง View เพื่อรักษาหลัก Single Source of Truth และสนับสนุนการไหลของข้อมูล
แบบทิศทางเดียว

รายละเอียดสำหรับการอ้างอิงเอกสารชุดนี้
• ผู้เขียน ธิติ ธีระเธียร
• วันที่เผยแพร่ วันที่ 10 กุมภาพันธ์ 2569
• เข้าถึงได้จาก https://ajthiti.gitbook.io/develop-in-swift/swiftdata/thinking-in-data
• เงื่อนใขในการใช้งาน This work is licensed under a Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International License.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	หัวข้อการเรียนรู้ : การออกแบบโมเดลข้อมูลและการใช้ SwiftData (Data Modeling & SwiftData)
	วัตถุประสงค์ในการทำกิจกรรม :

