
แนวทางในการจัดกิจกรรมภาคปฏิบัติ

หัวข้อการเรียนรู้ :
เริ่มต้นใช้ Xcode เพื่อเป็นเครื่องมือในการพัฒนา iOS Application ด้วย SwiftUI

ระยะเวลาในการทำกิจกรรม: 360 นาที

วัตถุประสงค์ในการทำกิจกรรม :
1. การพัฒนาความรู้และความเข้าใจในการใช้ Xcode ในฐานะเครื่องมือเพี่อการพัฒนาแอปสำหรับ

อุปกรณ์ของ Apple
2. การใช้ Xcode Playground เพื่อการเขียนโปรแกรมภาษา Swift และการออกแบบอัลกอริทึม
3. การใช้ Xcode ในกระบวนการพัฒนาแอป ตั้งแต่การสร้างโปรเจกต์ไปจนถึงการทดสอบแอปบน

อุปกรณ์เสมือน (Simulator) และอุปกรณ์จริง (Physical Device)
4. การใช้คุณสมบัติสำคัญของ Xcode เพื่อช่วยสนับสนุนการเขียน แก้ไข และทดสอบการทำงานของ

แอปอย่างเหมาะสม

ความคิดรวบยอด:
กิจกรรมการเรียนรู้ชุดนี้ มุ่งพัฒนาความรู้และทักษะพื้นฐานของผู้เรียนในการใช้ Xcode ในฐานะเครื่องมือ
สำหรับการเขียนโปรแกรมภาษา Swift และการพัฒนาแอปพลิเคชันสำหรับอุปกรณ์ของ Apple ด้วย
SwiftUI โดยเน้นให้ผู้เรียนได้สำรวจและทดลองเพื่อฝึกใช้คุณสมบัติและเครื่องมือต่าง ๆ ที่มีอยู่ใน Xcode
ตลอดกระบวนการออกแบบ พัฒนา ทดสอบ และปรับปรุงแอปพลิเคชันให้สามารถทำงานได้อย่างมี
ประสิทธิภาพ นอกจากนี้ ยังส่งเสริมการประยุกต์ใช้เทคโนโลยีปัญญาประดิษฐ์เพื่อสนับสนุนการเรียนรู้และ
การพัฒนาแอปในลักษณะของ AI-Assisted Development ผ่านคุณสมบัติ Coding Intelligence

บทความสำหรับอ่านประกอบการทำกิจกรรม
https://ajthiti.gitbook.io/develop-in-swift/meet-xcode

แนวทางในการจัดกิจกรรมการเรียนรู้

ขั้นนำเข้าสู่บทเรียน (Warm-up)
	 ในช่วงเริ่มต้นของบทเรียน ผู้สอนอาจเริ่มจากการตั้งคำถามเพื่อให้ผู้เรียนเริ่มคิดถึง “ที่มาของแอป” ที่ใช้
อยู่เป็นประจำ เช่น “ในโทรศัพท์ หรือ iPad ของเรา มีแอปใดที่เราใช้งานบ่อยที่สุด?” และ "คิดว่าแอปเหล่านี้ถูกสร้างขึ้น
มาอย่างไร?” หรือ “ถ้าเราอยากสร้างแอปของตัวเองขึ้นมา เราต้องเริ่มจากอะไร ?” หลังจากนั้น ผู้สอนอาจอธิบาย
เชื่อมโยงต่อไปว่า “แอปซึ่งทำงานบน iPhone, iPad และ Mac ถูกนักพัฒนาสร้างขึ้น โดยใช้เครื่องมือเฉพาะที่
เรียกว่า “Xcode”
	 ผู้สอนเปิดโปรแกรม Xcode และอธิบายว่า Xcode เป็นศูนย์รวมของเครื่องมือสำหรับการเขียนโค้ด การ
ออกแบบหน้าจอ การทดสอบการทำงานของแอป รวมทั้ง ยังมีความสามารถในการช่วยนักพัฒนาในการเขียน
คำสั่ง การให้คำแนะนำเพื่อแก้ไขข้อผิดพลาดที่มีอยู่ในโปรแกรม ซึ่งช่วยให้การพัฒนาเป็นไปอย่างรวดเร็วและมี
ประสิทธิภาพ บทเรียนนี้จะพาผู้เรียนไปรู้จัก Xcode ตั้งแต่การใช้เครื่องมือพื้นฐานไปจนถึงการใช้เทคโนโลยีปัญญา
ประดิษฐ์เพื่อช่วยในการพัฒนาแอป

https://ajthiti.gitbook.io/develop-in-swift/meet-xcode

ขั้นการเรียนรู้ (Learn)
	 หลังจากผู้เรียนได้รับการกระตุ้นความสนใจในขั้นนำเข้าสู่บทเรียนแล้ว ในขั้นการจัดการเรียนรู้ (Learn) จะมุ่ง
เน้นการพัฒนาความรู้และทักษะของผู้เรียนผ่านกิจกรรมการเรียนรู้เชิงปฏิบัติอย่างเป็นลำดับ โดยการใช้ Xcode เป็น
ศูนย์กลางของการเรียนรู้ และค่อยๆ พาผู้เรียนเปลี่ยนบทบาทจาก “ผู้ใช้แอป” ไปสู่ “ผู้พัฒนาแอป”

กิจกรรมที่ 1 การเรียนรู้เกี่ยวกับส่วนประกอบต่าง ๆ ของ Xcode
กิจกรรมแรกมีเป้าหมายเพื่อให้ผู้เรียนเข้าใจโครงสร้างและบทบาทของ Xcode ในฐานะเครื่องมือสำหรับการพัฒนา
แอป หรือ Integrated Development Environment (IDE) ผู้เรียนจะได้สำรวจส่วนประกอบต่างๆ ของ Xcode เช่น
Navigator Area, Editor Area, Inspector, Canvas และ Debug Area ซึ่งจะช่วยให้ผู้เรียนเห็นว่า Xcode ไม่ใช่เพียง
โปรแกรมสำหรับพิมพ์โค้ด แต่เป็นสภาพแวดล้อมสำหรับการพัฒนาแอปแบบครบวงจร

ผูู้สอนอาจเริ่มต้นกิจกรรมโดยแนะนำการใช้ macOS (สำหรับผู้เรียนที่ไม่เคยใช้ macOS มาก่อน) แล้วจึงแนะนำให้ผู้
เรียนเปิด Xcode เพิ่มเริ่มต้นสร้างโปรเจกต์แรกโดยเลือก Template เปน iOS > App

ตั้งชื่อ Project เปน HelloWorld และกำหนดค่า
ต่างๆ ดังนี้
 - กำหนด Organization Identifier เพื่อสราง
 Bundle Identifier ตามที่ตองการ
 - กำหนดคา Interface เปน SwiftUI
 - กำหนดคา Language เปน Swift
 - กำหนดคา Testing System เปน None
 - กำหนดคา Storage เปน None

ผู้สอนอธิบายถึงความสำคัญของ Bundle Identifier และวิธีในการกำหนดค่า Organization Identifier ด้วยการ
ใช้ รูปแบบโดเมนย้อนกลับ (Reverse-DNS) เช่น com.ajthiti.ios เพื่อให้มั่นใจได้ว่า Bundle Identifier ของแอปที่ถูก
สร้างขึ้นจะมีความเป็นเอกลักษณ์ ไม่ซ้ำกัน และเป็นไปตามมาตรฐานสำหรับการเผยแพร่แอปบน App Store

กำหนดตำแหน่งในการจัดเก็บโปรเจกต์

คลิกเพื่อเอาเครื่องหมายถูกที่ช่อง Source
Control ออกเพื่อยกเลิกการใช้ระบบจัดการ
เวอร์ชัน (Version Control)

คลิกที่ปุ่ม Create เพื่อสร้างโปรเจกต์

เมื่อสร้างโปรเจกต์ใน Xcode เรียบร้อยแล้ว ให้คลิกที่ไฟล์ ContentView.swift เพื่อเปิดส่วนประกอบหลักที่จะถูกใช้
ร่วมกันเพื่อสนับสนุนการพัฒนาแอปทั้งด้านการเขียนโค้ด การออกแบบส่วนติดต่อกับผู้ใช้ (UI) และการทดสอบ
โปรแกรม โดยผู้สอนอธิบายถึงส่วนประกอบต่างๆ บนหน้าจอของ Xcode ดังนี ้

• Toolbar : แถบเครื่องมือซึ่งอยู่ด้านบนสุดของหน้าต่าง Xcode ประกอบด้วยปุ่มและเมนูเพื่อเรียกผู้ช่วย AI และ
ส่วน Run Distination เพื่อกำหนดเป้าหมายในการรันแอปเพื่อทดสอบการทำงาน

• Navigator Area : พื้นที่ด้านซ้ายของ Xcode ใช้สำหรับเลือกและจัดการไฟล์ที่อยู่ในโปรเจกต์
• Editor Area : พื้นที่สำหรับการเขียนโค้ด
• Code mini map : ภาพรวมของโค้ด (Code Overview) ที่อยู่ด้านขวาของ Editor Area ซึ่งช่วยให้นักพัฒนา
มองเห็นโครงสร้างโค้ดทั้งหมดและเพิ่มประสิทธิภาพในการนำทางไปยังส่วนต่างๆ ภายในไฟล์

• Canvas (SwiftUI Preview) : พื้นที่แสดงผลลัพธ์ของโค้ดแบบเรียลไทม์ (Live Preview)
• Debug Area : พื้นที่ด้านล่างใช้สำหรับแสดง Log การทำงานของแอป ซึ่งจะปรากฏขึ้นมาเมื่อรันโปรแกรม โดย
นักพัฒนาสามารใช้เครื่องมือในส่วนนี้เพื่อตรวจสอบและวินิจฉัยข้อผิดพลาดในการทำงานของโปรแกรม

• Inspector : พื้นที่ด้านขวาสุด ใช้เพื่อตั้งค่าคุณสมบัติของไฟล์ หรือ UI Components โดยหากต้องการซ่อน
เพื่อเพิ่มพื้นที่ในการเขียนโค้ด ให้คลิกปุ่ม “Hide or show the Inspectors” ที่มุมขวาบนของ Toolbar

กิจกรรมที่ 2 การสำรวจไฟล์ต่างๆ ในโปรเจกต์
	
เริ่มการสำรวจไฟล์ต่างๆ ที่อยู่ในโปรเจกต์ เช่น Project File,
Swift File และ Assets Cataloge เพื่อทำความเข้าใจเกี่ยวกับ
โครงสร้างของแอป

การตั้งค่าของแอปที่ Project File
Project File เป็นส่วนที่ใช้เพื่อแสดงหน้าต่างการตั้งค่าคุณสมบัติของแอปที่ถูกกำหนดไว้ตอนสร้างโปรเจกต์ รวมทั้ง
การกำหนดคุณสมบัติเพิ่มเติมซึ่งเป็นส่วนสำคัญที่ใช้ในการ Build และเผยแพร่แอปไปยัง App Store

เพื่อกำหนดค่าในการ Build ผลลัพธ์ ให้ผู้เรียนคลิกที่ ชื่อแอป (HelloWorld) ในส่วน Targets และเลือกที ่แถบ
Ganeral เพื่อกำหนดรายละเอียดของค่าต่างๆ ในการระบุว่า แอปที่สร้างขึ้นจะสามารถทำงานบนอุปกรณ์ประเภทใด
ได้บ้าง การกำหนดเวอร์ชันขั้นต่ำของระบบปฏิบัติการที่รองรับ และการกำหนดประเภท หมายเลข Version และ Build
ของแอปสำหรับการเผยแพร่บน App Store รวมทั้งการกำหนดรายละเอียดของการแสดงผลและพฤติกรรมของ
แอปบนอุปกรณ์ปลายทาง

โครงสร้างของแอปที่สร้างด้วย SwiftUI
เมื่อสร้างโปรเจกต์ด้วย SwiftUI ผู้เรียนจะพบว่า Xcode ได้สร้างโพลเดอร์สำหรับจัดเก็บไฟล์และโครงสร้างพื้นฐานไว้
ให้แล้ว ซึ่งสามารถแบ่งโครงสร้างพื้นฐานของแอปออกได้เป็น 3 ส่วนหลัก คือ

ส่วนเริ่มต้นของแอป -> ไฟล์ HelloWorldApp.swift
ไฟล์ HelloWorldApp.swift ทำหน้าที่เป็น จุดเริ่มต้นของแอปพลิเคชัน (Application Entry Point) ในสถาปัตยกรรม
ของ SwiftUI โดยเป็นไฟล์ที่กำหนดโครงสร้างระดับแอป (Application Structure) และระบุฉากการแสดงผล (Scene)
ที่แอปจะใช้เมื่อเริ่มทำงาน ตัวอย่างโค้ดพื้นฐานมีดังนี้

import SwiftUI

@main
struct HelloWorldApp: App {
 var body: some Scene {
 WindowGroup {
 ContentView()
 }
 }
}

คีย์เวิร์ด @main เป็น Attribute ที่ใช้ระบุว่า โครงสร้าง (struct) นี้คือ จุดเริ่มต้นของโปรแกรม เมื่อแอปถูกเรียกใช้
งาน ระบบจะเริ่มต้นการทำงานจากโค้ดในไฟล์นี้ทันที

คำสั่ง struct HelloWorldApp: App เป็นการประกาศว่า HelloWorldApp มีความสอดคล้องกับ App protocol ซึ่ง
เป็นโปรโตคอลหลักของ SwiftUI สำหรับกำหนดโครงสร้างระดับแอปพลิเคชัน App protocol มีหน้าที่สำคัญดังนี้

• กำหนด Lifecycle ของแอป
• สร้าง Environment เริ่มต้นของแอป
• ระบุ Scene ที่ใช้สำหรับแสดงผล

เมื่อแอปเริ่มทำงาน SwiftUI จะอ่านค่าที่กำหนดไว้ภายใน var body: some Scene เพื่อสร้างสภาพแวดล้อมของแอป
(App Environment) และกำหนดฉากการแสดงผล (Scene) ที่แอปจะต้องใช้ขึ้นมา

ฉากการแสดงผล (Scene) ทำหน้าที่เป็นตัวแทนของพื้นที่แสดงผล (Presentation Space) ซึ่งกำหนดลักษณะ
ของสภาพแวดล้อมที่ใช้แสดง View สำหรับการโต้ตอบกับผู้ใช้ โดยหนึ่งแอปสามารถประกอบด้วย Scene ได้มากกว่า
หนึ่งรูปแบบ ทั้งนี้แต่ละ Scene จะถูกออกแบบมาเพื่อรองรับบริบทการใช้งานที่แตกต่างกัน ใน SwiftUI มีรูปแบบของ
ฉากการแสดงผล หรือ Scene ให้เลือกใช้งานหลายประเภท เช่น
• WindowGroup สำหรับจัดการหน้าต่างหรือหน้าจอหลักของแอป
• DocumentGroup สำหรับแอปที่ทำงานกับเอกสารหลายไฟล์
• Settings สำหรับสร้างหน้าการตั้งค่าของแอป
• ImmersiveSpace สำหรับแอปเชิงประสบการณ์เสมือน หรือ Spatial Computing

ภายใน WindowGroup ของฉากการแสดงผล นักพัฒนาจะกำหนด View หลัก (Root View) ของแอป ซึ่งมักเป็น
ไฟล์ที่ชื่อว่า ContentView โดย ContentView จะทำหน้าที่เป็นจุดเริ่มต้นของโครงสร้างหน้าจอทั้งหมดในแอป เมื่อ
หน้าต่างถูกสร้างขึ้น SwiftUI จะนำ ContentView มาแสดงเป็นหน้าจอแรก

ส่วนการออกแบบส่วนติดต่อผู้ใช้ -> ไฟล์ ContentView.swift
ไฟล์ ContentView.swift เป็นไฟล์หลักที่ใช้เพื่อเริ่มต้นการสร้างส่วนติดต่อกับผู้ใช้ (UI) ของแอป โดยเป็นโครงสร้างที่
มีความสอดคล้องกับแนวคิด Declarative UI ซึ่งนักพัฒนาจะอธิบายว่า “หน้าจอควรมีลักษณะอย่างไร” มากกว่า
การสั่งขั้นตอนการวาด UI ทีละลำดับ

SwiftUI จะอ่านโครงสร้างหน้าจอ (View hierarchy) จาก body และทำหน้าที่วาด UI รวมถึงจัดการการปรับปรุง
หน้าจอให้โดยอัตโนมัติ โดยทั่วไปโค้ดพื้นฐานของ ContentView มักมีรูปแบบ ดังนี้

import SwiftUI

struct ContentView: View {

 var body: some View {

 VStack {

 Image(systemName: "globe")
 .imageScale(.large)
 .foregroundStyle(.tint)

 Text("Hello, world!")

 }
 .padding()

 }
}

ContentView จะมีโครงสร้างที่กำหนดให้สอดคล้องกับ View protocol ซึ่งเป็นหน่วยพื้นฐานที่สุดในการสร้างส่วน
ติดต่อกับผู้ใช้ด้วย SwiftUI ซึ่งจะถูกใช้เพื่ออธิบายว่า View ที่จะแสดงขึ้นมาจะประกอบไปด้วยสิ่งใดบ้างและจะต้องมี
การจัดวางในตำแหน่งต่างๆ บนจอภาพอย่างไร โดยการนิยามโครงสร้างของหน้าจอในลักษณะ Tree Structure
หรือที่เรียกว่า View Hierarchy ลงในส่วน body โดย SwiftUI จะอ่านโครงสร้างนี้จากบนลงล่าง และแปลงเป็นส่วน
ติดต่อกับผู้ใช้จริงบนหน้าจอ

ในการกำหนดตำแหน่งและลักษณะของการจัดวาง UI Components บนจอภาพ เราจะใช้ Layout Containers เช่น
VStack, HStack หรือ ZStack เพื่อทำหน้าที่จัดเรียงองค์ประกอบตามที่กำหนด โดย Layout เหล่านี้ไม่ใช่ส่วนที่แสดง
ผลโดยตรง แต่เป็นตัวกำหนดโครงสร้างและตำแหน่งขององค์ประกอบบนหน้าจอ

การแสดงผลในระดับลึกที่สุดของ View Hierarchy คือ Leaf Views ซึ่งเป็นกำหนดองค์ประกอบทีผู่้ใช้มองเห็นจริง
บนหน้าจอ เช่น Text, Image, Button ซึ่ง View เหล่านี้จะถูกจัดวางอยู่ภายใน Layout Containers ตามที่กำหนดไว้
(ผู้เรียนจะได้ศึกษาเกี่ยวกับวิธีในการสร้างส่วนติดต่อกับผู้ใช้แบบ Declarative ด้วย SwiftUI โดยละเอียดในบทเรียน
เรื่อง View และ Modifier)

ส่วนการจัดการทรัพยากร -> ไฟล์ Assets.xcassets

ไฟล์ Asset Catalog เป็นคลังสื่อหรือพื้นที่จัดเก็บ “ทรัพยากร” (Resources) ของแอปในรูปแบบที่ Xcode และระบบ
ปฏิบัติการของ Apple สามารถจัดการให้เหมาะสมได้โดยอัตโนมัติ โดยทรัพยากรที่จะถูกเก็บใน Asset Catalog ได้แก่
ไอคอนของแอป รูปภาพ และชุดสี

กิจกรรมที่ 3 การใช้ Playground เพื่อเรียนรู้การเขียนโปรแกรมภาษา Swift
กิจกรรมในส่วนนี้ มีเป้าหมายเพื่อให้ผู้เรียนสามารถใช้ Playground ซึ่งอยู่ใน Xcode เพื่อทดลองเขียนโปรแกรมภาษา
Swift ในลักษณะของการเรียนรู้แบบทดลอง (Experimentation) ผู้เรียนจะได้ฝึกสร้างคำสั่งและอัลกอริทึม เช่น การ
เก็บค่าในตัวแปร การใช้คำสั่งแบบกำหนดเงื่อนไขและการวนซ้ำ การสร้างขั้นตอนวิธีเพื่อการแก้ไขปัญหา พร้อมทั้ง
เห็นผลลัพธ์ของโค้ดแบบทันที กิจกรรมนี้ทำหน้าที่เป็นสะพานเชื่อมระหว่างแนวคิดการเขียนโปรแกรมกับการพัฒนา
แอปจริง ช่วยให้ผู้เรียนเกิดความมั่นใจก่อนการสร้างโปรเจกต์เพื่อการพัฒนาแอปด้วย SwiftUI

Playground คือ สภาพแวดล้อมสำหรับทดลองเขียนและรันโค้ดภาษา Swift แบบโต้ตอบ ซึ่งนักพัฒนาสามารถใช้ใน
การสร้างคำสั่งและการทดสอบโค้ดโดยไม่จำเป็นต้องสร้างโปรเจกต์แบบเต็มรูป ในการจัดการเรียนการสอนสำหรับผู้
ที่ยังไม่เคยมีพื้นฐานการเขียนโปรแกรมภาษา Swift มาก่อน ผู้สอนอาจให้ผู้เรียนใช้ Playground ร่วมกับการศึกษา
เนื้อหาเรื่อง Swift Programming โดยให้ผู้เรียนศึกษาและทดลองเขียนคำสั่งต่างๆ ตามเนื้อหาซึ่งเผยแพร่ในรูปแบบ
เอกสารออนไลน์ที่เข้าถึงได้จาก https://ajthiti.gitbook.io/swift

เริ่มต้นสร้างไฟล์ Playground เพื่อใช้ในการทดลองเขียนโปรแกรมภาษา Swift

1. เปิดโปรแกรม Xcode เลือกเมนู File -> New -> Playground
2. เลือกแพลตฟอร์มเป็น iOS
3. เลือกรูปแบบ Playground (Template) เป็น Blank
4. คลิกที่ ปุ่ม Next
5. ตั้งชื่อไฟล์และเลือกตำแหน่งจัดเก็บ เช่น Desktop > My Project
6. คลิกที่ ปุ่ม Create

https://ajthiti.gitbook.io/swift

เมื่อสร้าง Playground สำเร็จ จะพบโครงสร้างของไฟล์ที่เรียบง่าย โดยทั่วไปจะประกอบด้วยโค้ดเริ่มต้น ดังนี้

import UIKit

var greeting = "Hello, playground”

และผู้เรียนจะเห็นส่วนประกอบหน้าจอสำหรับการทำงานของ Playground ซึ่งแบ่งออกเป็นส่วนๆ ดังนี ้

Navigator Area : ทำหน้าที่แสดงโครงสร้างของไฟล์ Playground โดยในภาพจะเห็นองค์ประกอบหลัก ได้แก่
• Playground File (MyPlayground) เป็นไฟล์หลักสำหรับเขียนและทดลองโค้ดภาษา Swift
• Sources ใช้สำหรับเก็บโค้ดที่ต้องการนำมาใช้ซ้ำ
• Resources ใช้สำหรับจัดเก็บไฟล์ทรัพยากร เช่น รูปภาพ ไฟล์ข้อมูล หรือสื่ออื่นๆ

Editor Area : เป็นพื้นที่หลักสำหรับเขียนคำสั่งภาษา Swift
Result Sidebar : เป็นส่วนที่แสดงผลลัพธ์ของโค้ดที่เขียนใน Playground แบบทันที (Immediate Feedback)
Inspector Area : ใช้สำหรับกำหนดคุณสมบัติและการตั้งค่าของ Playground
Console/Debug Area : ใช้แสดงผลลัพธ์หรือสถานะการทำงานของ Playground ระหว่างการรันโค้ด

เพื่อศึกษาการเขียนโปรแกรมด้วยภาษา Swift ผู้สอนอาจให้ผู้เรียนใช้ Playgound เพื่อเรียนรู้วิธีการเขียนโปรแกรม
ด้วยภาษา Swift ในหัวข้อต่างๆ ดังต่อไปนี้
 	 - ตัวแปร ค่าคงที่ และประเภทของข้อมูล
 	 - การจัดการกับตัวแปรที่ยังไม่ได้กำหนดค่าด้วย Optional
	 - ตัวดำเนินการประเภทต่างๆ
	 - การจัดเก็บข้อมูลแบบ Collection
	 - การใช้คำสั่งแบบเงื่อนไขและคำสั่งทำซ้ำ
	 - การสร้างฟังก์ชันและการใช้ Closure
	 - การเขียนโปรแกรมเชิงวัตถุ
โดยผู้เรียนสามารถศึกษาเนื้อหาเพิ่มเติมด้วยตนเองได้จากเว็บไซต์ https://ajthiti.gitbook.io/swift

หลังจากนั้นอาจให้ผู้เรียนทดลองเขียนคำสั่งในภาษา Swift เพื่อออกแบบขั้นตอนวิธี (Algorithm Design) ในการ
แก้ไขปัญหา เช่น การจัดเรียนข้อมูลในอาร์เรย์ และสังเกตผลลัพธ์ที่เกิดขึ้นในส่วน Result Sidebar

import Foundation

var numbers = [42, 18, 30, 15, 50]

for i in 0..<numbers.count {
 for j in 0..<numbers.count - i - 1 {
 if numbers[j] > numbers[j + 1] {
 let temp = numbers[j]
 numbers[j] = numbers[j + 1]
 numbers[j + 1] = temp
 }
 }
}

print(numbers)

กิจกรรมที่ 4 คุณสมบัติสำคัญของ Xcode เพื่อสนับสนุนการเขียนและแก้ไขโค้ด
กิจกรรมในส่วนนี้ มีเป้าหมายเพื่อส่งเสริมให้ผู้เรียนเรียนรู้เกี่ยวกับการใช้คุณสมบัติสำคัญของ Xcode เช่น Syntax
Highlighting, Code Completion รวมถึงการวิเคราะห์ Errors และ Warnings เผื่อฝึกแก้ไขข้อผิดพลาดและเรียนรู้
ว่า ข้อผิดพลาดเป็นส่วนหนึ่งของกระบวนการพัฒนาแอป

คุณสมบัติที่ 1: การมองเห็นโครงสร้างของโค้ดด้วย Syntax Highlighting
หนึ่งในคุณสมบัติที่มีบทบาทสำคัญต่อคุณภาพในการพัฒนาโปรแกรมใน Xcode คือ Syntax Highlighting ซึ่งไม่ใช่
แค่การตกแต่งโค้ดให้มีสีสันสวยงาม แต่เป็นกลไกเชิงโครงสร้างที่ช่วยจำแนกองค์ประกอบของภาษาออกจากกัน
อย่างชัดเจน ส่งผลให้ผู้พัฒนาสามารถมองเห็นทั้ง ความหมาย (Semantics) และ ความสัมพันธ์ของสิ่งต่างๆ ในโค้ด
ได้ทันที

ผู้สอนอาจเริ่มต้นกิจกรรมโดยใช้โค้ดการจัดเรียนข้อมูลในอาร์เรย์ และสอบถามผู้เรียนว่า “ผู้เรียนสามารถบอกได้หรือ
ไม่ว่า สีของคำที่แสดงในโค้ด มีประโยชน์อย่างไร ? ”

import Foundation

var numbers = [42, 18, 30, 15, 50]

for i in 0..<numbers.count {
 for j in 0..<numbers.count - i - 1 {
 if numbers[j] > numbers[j + 1] {
 let temp = numbers[j]
 numbers[j] = numbers[j + 1]
 numbers[j + 1] = temp
 }
 }
}

print(numbers)

หลังจากนั้น ผู้สอนจึงเริ่มอธิบายและชี้ให้ผู้เรียนเห็นถึงประโยชน์ของคุณสมบัติ Syntax Highlighting ซึ่งเป็นกลไกที่
เปลี่ยนโค้ดจาก “ข้อความธรรมดา” ให้กลายเป็น โครงสร้างที่มองเห็นได้ โดยให้ผู้เรียนฝึกการจำแนกองค์ประกอบ
ของภาษา เช่น คำสงวน ตัวแปร และค่าของข้อมูล โดยสังเกตจากรูปแบบและสีที่ถูกแสดงขึ้นมาในโค้ด

สำหรับนักพัฒนา คุณสมบัติ Syntax Highlighting ยังมีบทบาทสำคัญต่อการอ่านและทำความเข้าใจโครงสร้าง
ของคำสั่งในภาษาที่ไม่คุ้นเคย ตัวอย่างเช่น

func calculateGrade(score: Int) -> String {
 switch score {
 case 90...100:
 return "A"
 case 80..<90:
 return "B"
 case 70..<80:
 return "C"
 default:
 return "F"
 }
}

การเน้นสีด้วย Syntax Highlighting ช่วยให้ นักพัฒนาแยกได้ทันทีว่า
- ส่วนใดคือ โครงสร้างควบคุม (switch–case)
- ส่วนใดคือ ช่วงข้อมูล (Range)
- ส่วนใดคือ ค่าที่ส่งกลับ (Return Value)

คุณสมบัติที่ 2: การช่วยเขียนโค้ดอย่างชาญฉลาดด้วย Code Completion
นอกจากการมองเห็นโครงสร้างของโค้ดด้วย Syntax Highlighting แล้ว อีกหนึ่งคุณสมบัติสำคัญของ Xcode ที่มี
ผลโดยตรงต่อประสิทธิภาพและคุณภาพของการพัฒนาโปรแกรม คือ Code Completion ซึ่งทำหน้าที่เป็น “ผู้ช่วย
อัจฉริยะ (Intelligent Assistant)” ที่สนับสนุนการเขียนโค้ดของนักพัฒนาแบบเรียลไทม์

เพื่อให้ผู้เรียนเข้าใจบทบาทของ Code Completion อย่างเป็นรูปธรรม ผู้สอนสามารถเริ่มต้นด้วยการกำหนด โจทย์
เชิงสถานการณ์ ที่ใกล้ตัวและเข้าใจง่ายเพื่อให้ผู้เรียนออกแบบขั้นตอนวิธี เช่น การคำนวณ ค่าดัชนีมวลกาย (Body
Mass Index: BMI) และให้นำขั้นตอนวิธีดังกล่าวมาทดลองเขียนคำสั่งใน Xcode Playground โดยระหว่างการ
พิมพ์คำสั่ง ผู้สอนควรเน้นย้ำเพื่อให้ผู้เรียนสังเกตอย่างตั้งใจว่า Xcode แสดงคำแนะนำใดขึ้นมาในแต่ละช่วงของการ
พิมพ์คำสั่ง

ตัวอย่างของโปรแกรมสำหรับการคำนวณ ค่าดัชนีมวลกาย (Body Mass Index: BMI)

import Foundation

let h: Int = 179
let w: Int = 80

func bmi(height: Int, weight: Int) -> Double {
 return Double(weight) / pow(Double(height) / 100, 2)
}

print(bmi(height: h, weight: w))

ผู้สอนอธิบายและชี้ให้ผู้เรียนเห็นว่า Code Completion ไม่ได้เป็นเพียงการเติมคำอัตโนมัติ (Auto-complete) แต่เป็น
กลไกที่อาศัยการวิเคราะห์บริบทของโค้ด (Context-Aware Analysis) เพื่อแนะนำคำสั่งที่ถูกต้อง เหมาะสม และ
สอดคล้องกับสถานการณ์ รวมทั้งยังเป็นหัวใจสำคัญของการพัฒนาโปรแกรมใน Xcode ที่เปลี่ยนกระบวนการเขียน
โค้ดจาก “การพิมพ์คำสั่งตามความจำ” เป็น “การออกแบบโค้ดโดยอาศัยความเข้าใจเชิงโครงสร้างและบริบท”

คุณสมบัติที่ 3: ระบบการตรวจสอบข้อผิดพลาดในโค้ดด้วย Compiler Errors & Warnings
โดยทั่วไปตัวแปรภาษาแบบคอมไพเลอร์ (Compiler) ใน Xcode จะทำหน้าที่แปลโค้ดจากภาษาที่มนุษย์เขียน (Swift) ให้
อยู่ในรูปแบบที่ระบบสามารถประมวลผลได้ โดยระหว่างกระบวนการดังกล่าวคอมไพเลอร์จะทำ Static Analysis เพื่อ
ตรวจสอบว่า

• โค้ดถูกต้องตามไวยากรณ์หรือไม่ (Syntax)
• ชนิดข้อมูลสอดคล้องกันหรือไม่ (Type Safety)
• มีโค้ดที่เสี่ยงต่อความผิดพลาดหรือคุณภาพต่ำหรือไม่

โดยผลลัพธ์ของการตรวจสอบจะถูกแสดงออกมาในรูปแบบของข้อผิดพลาด (Error) และคำเตือน (Warning) จาก
คอมไพเลอร์ ซึ่งเป็นกลไกการสะท้อนกลับ (Feedback) ซึ่งช่วยให้นักพัฒนามองเห็นข้อบกพร่องของโค้ด รวมทั้ง
ช่วยให้คำแนะนำในการแก้ไขให้โค้ดมีความถูกต้อง (Correctness) มีคุณภาพ (Quality) และง่ายต่อการดูแลรักษา
(Maintainability) ในอนาคต

เพื่อทดลองใช้ระบบการตรวจสอบข้อผิดพลาดในโค้ด ให้ผู้เรียนพิมพ์โค้ดต่อไปนี้

import Foundation

let firstNumber = "17"
let secondNumber = 80.0

var result = firstNumber + secondNumber

print(result)

คลิกที่ข้อความ error เพื่อแสดงคำอธิบายจากคอมไพเลอร์

เพื่อขยายความเข้าใจ ผู้สอนอธิบายเกี่ยวกับคุณสมบัติ Type Safety ในภาษา Swift และปัญหา Type Mismatch
Error ที่ปรากฏขึ้นมา และเสนอแนะให้ผู้เรียนปรับปรุงโค้ดในบรรทัดที่ 8 เพื่อแก้ปัญหา Type Mismatch Error ด้วย
การแปลงชนิดข้อมูล (Type casting) ดังนี้

var result = Double(firstNumber) + secondNumber

อย่างไรก็ตาม เมื่อผู้เรียนทำการแปลงชนิดของข้อมูลเรียบร้อยแล้ว แต่คอมไพเลอร์ยังคงตรวจพบและแสดงปัญหา
ขึ้นมาอยู่ ปัญหาดังกล่าว คือ Optional Handling Error ซึ่งเกิดจากการพยายามนำค่าแบบ Optional ไปใช้งานใน
บริบทที่ต้องการค่าแบบ Non-optional โดยยัง ไม่ได้จัดการ (unwrap) ค่า Optional ให้เรียบร้อย

ในกรณีนี้ ระบบจะไม่เพียงแจ้งว่า “ตรวจพบข้อผิดพลาด” แต่จะ เสนอแนวทางแก้ไขที่เหมาะสมตามบริบท ผ่านกลไก
ที่เรียกว่า Fix-It หรือ Quick Fix ซึ่งทำงานแบบโต้ตอบกับนักพัฒนาอย่างเป็นขั้นตอน จากตัวอย่าง คอมไพเลอร์
เสนอแนวทางในการแก้ไข จำนวน 2 แนวทาง คือ
 (1) การใช้ Nil-coalescing ด้วย ?? เพื่อการกำหนดค่าเริ่มต้น หากไม่สามารถแปลงค่าได้สำเร็จ
 (2) การใช้ Force-unwrap ด้วย ! เพื่อยืนยันว่า ค่าดังกล่าวจะไม่เป็นค่า nil โดยโปรแกรมจะหยุดการทำงานทันที่
 ถ้าผลการทำงานเป็น nil

กำหนดให้ผู้เรียนพิจารณาทางเลือกในการแก้ไขปัญหา พร้อมอธิบายเหตุผล หลังจากนั้นให้เขียนโค้ดเพิ่มดังนี้

func calculateVAT(input: Double) -> Double {
 let vatRate = 0.07
 return input * vatRate
 print("Done")
}

var total = calculateVAT(input: result)
print(total)

คลิกที่ข้อความ Warning เพื่อแสดงคำอธิบายจากคอมไพเลอร์

ผู้สอนอธิบายเพิ่มเติมเพื่อให้ผู้เรียนเกิดความเข้าใจว่า ฟังก์ชัน calculateVAT มีหน้าที่คำนวณภาษีมูลค่าเพิ่มจาก
ค่าที่รับเข้ามาและจะคืนค่าเป็นข้อมูลแบบ Double ตามที่ประกาศไว้ อย่างไรก็ตาม เมื่อฟังก์ชันทำงานมาถึงคำสั่ง
return การทำงานของฟังก์ชันจะสิ้นสุดลงทันที ส่งผลให้คำสั่ง print("Done") ที่อยู่ถัดมา ไม่มีโอกาสถูกเรียกใช้
งานในทุกกรณี คอมไพเลอร์จึงแสดง Warning เพื่อแจ้งให้ผู้พัฒนาทราบว่า โค้ดในส่วนนี้ไม่มีประโยชน์ในเชิงการ
ทำงานของโปรแกรม

ประเด็นสำคัญ คือ Warning ประเภทนี้ ไม่ใช่ข้อผิดพลาดทางไวยากรณ์ (Syntax Error) และ ไม่ใช่ข้อผิดพลาดเชิง
ตรรกะที่ทำให้ผลลัพธ์ผิดพลาดโดยตรง เนื่องจากฟังก์ชันยังสามารถคืนค่าและถูกเรียกใช้งานได้ตามปกติ ดังจะ
เห็นได้จากโค้ดที่เรียกใช้ฟังก์ชัน calculateVAT

var total = calculateVAT(input: result)
print(total)

โค้ดดังกล่าวยังทำงานและได้ผลลัพธ์ที่ถูกต้อง แสดงให้เห็นว่า Warning ไม่ได้ขัดขวางการทำงานของโปรแกรม แต่
ทำหน้าที่เป็นสัญญาณเตือนด้านคุณภาพของโค้ด (Code Quality)

ผู้สอนและผู้เรียนสรุปรวมกันเกี่ยวกับประโยชน์ในการนำคุณสมบัติสำคัญของ Xcode เช่น Syntax Highlighting,
Code Completion และ Compiler Errors & Warnings มาใช้ในการพัฒนาแอป ดังนี้
• Syntax Highlighting ทำหน้าที่เป็นเครื่องมือช่วยในการมองเห็นโครงสร้างของโค้ดอย่างเป็นระบบ การแยกสี
ช่วยให้นักพัฒนาสามารถรับรู้บทบาทขององค์ประกอบต่างๆ ในภาษาได้ทันที และช่วยให้เข้าใจโครงสร้างเชิงลำดับ
ชั้นของอัลกอริทึมได้ดีขึ้น การเปลี่ยนโค้ดจากข้อความธรรมดาให้กลายเป็นโครงสร้างที่สามารถ “อ่าน วิเคราะห์
และตรวจสอบ” ได้ง่ายเป็นพื้นฐานสำคัญของการออกแบบโปรแกรมที่มีคุณภาพ

• Code Completion ทำหน้าที่เป็นผู้ช่วยเชิงปัญญาในระหว่างการเขียนโค้ด โดยอาศัยการวิเคราะห์บริบทของภาษา
เพื่อแนะนำคำสั่ง โครงสร้าง และฟังก์ชันเพื่อใช้ในการทำงานที่มีความเหมาะสมในขณะนั้น คุณสมบัตินีช้่วยลดการ
พึ่งพาการจดจำไวยากรณ์หรือชื่อคำสั่งทั้งหมด ทำให้นักพัฒนาสามารถมุ่งความสนใจไปที่การออกแบบตรรกะ
และโครงสร้างของโปรแกรมได้มากขึ้น

• Compiler Errors & Warnings ทำหน้าที่เป็นกลไกสะท้อนคุณภาพของโค้ดในเชิงลึก โดย Error ช่วยป้องกัน
ความผิดพลาดที่ทำให้โปรแกรมไม่สามารถทำงานได้ ขณะที่ Warning ทำหน้าที่เตือนถึงปัญหาเชิงโครงสร้าง
ความสมเหตุสมผล และแนวปฏิบัติที่ควรปรับปรุง

กิจกรรมที่ 5 การใช้เทคโนโลยีปัญญาประดิษฐ์และคุณสมบัติ Coding Intelligence
กิจกรรมต่อยอดจากการใช้เครื่องมือพื้นฐาน ไปสู่การใช้เทคโนโลยีปัญญาประดิษฐ์ผ่านคุณสมบัติ Coding
Intelligence ใน Xcode 26 ผู้เรียนจะได้ทดลองใช้ AI เพื่อช่วยแนะนำ แก้ไข และอธิบายโค้ด SwiftUI พร้อมทั้งเรียนรู้
การใช้ AI ในฐานะเครื่องมือสนับสนุนการเรียนรู้ (AI-Assisted Development)

Xcode 26 และ ศัยกภาพของชิป Apple Silicon ได้ยกระดับประสบการณ์การพัฒนาแอปไปอีกขั้นด้วยคุณสมบัติ
Coding Intelligence ซึ่งเป็นการผสานเทคโนโลยีปัญญาประดิษฐ์เข้ากับ IDE อย่างเป็นระบบ ทำให้สามารถให้คำ
แนะนำได้อย่างชาญฉลาด เมื่อพิจารณาเปรียบเทียบกับคุณสมบัติ Code Completion หรือ Autocomplete แบบเดิม
โดยจะเห็นได้อย่างชัดเจนว่า Autocomplete ในยุคก่อนมุ่งเน้นที่ระดับไวยากรณ์ของภาษาและสามารถตอบคำถาม
พื้นฐานได้ดีว่า “ควรพิมพ์อะไรต่อ” แต่ไม่สามารถอธิบายได้ว่า “โค้ดนี้ทำงานอย่างไร” หรือ “เหตุใดจึงควรเขียนใน
ลักษณะนี้”

อย่างไรก็ตาม Coding Intelligence ไม่ได้ถูกออกแบบมาเพื่อทำหน้าที่เขียนโค้ดแทนนักพัฒนา แต่ทำหน้าที่เป็น “ผู้
ช่วยทางความคิด” ที่ช่วยอธิบาย แนะนำ และสนับสนุนในกระบวนการพัฒนาแอป โดยเฉพาะอย่างยิ่งสำหรับผู้เรียน
และนักพัฒนาระดับเริ่มต้น ดังนั้น ในการเรียนรู้และพัฒนาแอปด้วย SwiftUI ผู้เรียนสามารถใช้ AI เพื่อทำหน้าที่ในการ
อธิบายโค้ด (Code Explainer) ช่วยวิเคราะห์ปัญหาและข้อผิดพลาด (Problem Solver) และสนับสนุนการปรับปรุง
โค้ด (Refactoring Assistant)

ก่อนเปิดใช้งาน Coding Intelligence ผู้เรียนควรตรวจสอบเงื่อนไขพื้นฐานดังนี้

• เครื่อง Mac ใช้ชิป Apple Silicon เช่น M1 หรือ รุ่นที่ใหม่กว่า
• ติดตั้งระบบปฎิบัติการ macOS เวอร์ชัน 26 หรือ รุ่นที่ใหม่กว่า
• ติดตั้ง Xcode 26 เวอร์ชัน 26 หรือ รุ่นที่ใหม่กว่า
• บัญชีผู้ใช้งาน ChatGPT หรือ Claude ai

การเปิดใช้คุณสมบัติ Coding Intelligence ใน Xcode
 1. เลือก Xcode > Settings…
 2. เลือกแท็บ Intelligence
 3. เลือก Login ด้วยบัญชีผู้ใช้งาน ChatGPT หรือ
 Claude ai

นอกจาก ChatGPT หรือ Claude ai แล้ว เรายังสามารถใช้
Add a Model Provider.. เพื่อเชื่อมต่อ Xcode กับ LLMs
จากผู้ให้บริการรายอื่น หรือการใช้ LM Studio หรือ Ollama
เพื่อติดตั้งโมเดลภาษาบนเครื่องของเราเอง และใช้งานในรูป
แบบ On-device AI (Local LLMs)ได้อีกด้วย

ตัวอย่างในการกำหนดค่าการใช้งานในรูปแบบ On-device AI โดยติดตั้งโมเดลภาษา Qwen3 ที่มีพารามิเตอร์ 4 พัน
ล้านตัว บนเครื่องของเราเองผ่านโปรแกรม LM Studio

เมื่อติดตั้งโมเดลภาษาเรียบร้อยแล้ว ให้เปิดโปรเจกต์ HelloWorld แล้วคลิกที่ปุ่ม Coding Intelligence

การใช้ Coding Intelligence เพื่ออธิบายโค้ด SwiftUI
1. เลือกที่ไฟล์ ContentView.swift
2. ให้ผู้เรียนตั้งคำถาม โดยการพิมพ์ Prompt ลงในช่อง Message เช่น

• Prompt - “อธิบายโครงสร้างของ SwiftUI ในไฟล์ ConTentView ในเชิงแนวคิด”
• Prompt - “VStack ทำหน้าที่อะไร และมีผลต่อ Layout อย่างไร”

3. ผู้เรียนอ่านคำอธิบายจาก AI และสรุปความเข้าใจด้วยภาษาของตนเอง (Reflection สั้น)

การใช้ Coding Intelligence เพื่อวิเคราะห์ปัญหาและข้อผิดพลาด (Problem Solver)

1. แก้โค้ดเพื่อให้เกิด Error เช่น Text(Hello, world!)
2. สังเกต Compiler Error ที่ Xcode แสดงขึ้นมา
3. ดับเบิลคลิกเพื่อเลือกบรรทัดที่เกิด Error
4. คลิกที่สัญลักษณ์ Coding Intelligence และพิมพ์ Prompt เพื่อให้ AI ช่วยอธิบาย Error ที่เกิดขึ้น พร้อมบอก

แนวทางแก้ไขปัญหา เช่น
Prompt - “อธิบายว่า Error นี้เกิดจากอะไร และควรแก้ไขอย่างไร เพราะเหตุใด”

5. ผู้เรียนอ่านคำอธิบายจาก AI และสรุปความเข้าใจด้วยภาษาของตนเอง (Reflection สั้น)
6. แก้ไขโค้ดตามคำแนะนำของ AI

การใช้ Coding Intelligence เพื่อการปรับปรุงโค้ด (Refactoring Assistant)
กำหนดให้ผู้เรียนปรับปรุงโค้ดในไฟล์ ContentView.swift ดังนี้

struct ContentView: View {
 var body: some View {

 VStack(spacing: 16) {

 let weight = 68.0
 let height = 1.70
 let bmi = weight / (height * height)

 Text("BMI Calculator")
 .font(.title)

 Text("Weight: \(weight) kg")
 Text("Height: \(height) m")
 Text("BMI: \(bmi)")

 }
 .padding()
 }
}

ให้ผู้เรียนเลือกโค้ดทั้งหมดใน ContentView จากนั้นให้เรียกใช้ Coding Intelligence เพื่อให้ช่วยในการปรับปรุงโค้ด
ด้วย Prompt อย่างเช่น “ช่วยวิเคราะห์โค้ด SwiftUI ในส่วนที่ถูกเลือกนี้ และปรับปรุงโครงสร้างให้เหมาะสมและน่าใช้
งานมากขึ้น” หลังจากนั้น ให้ผู้เรียนอ่านคำอธิบายจาก AI และสรุปความเข้าใจด้วยภาษาของตนเอง พร้อมแก้ไขโค้ด
ตามคำแนะนำของ AI

กิจกรรมที่ 6 : การทดสอบแอปบนอุปกรณ์เสมือนและอุปกรณ์จริง
กิจกรรมสุดท้าย มุ่งให้ผู้เรียนเกิดความเข้าใจเกี่ยวกับการทดสอบแอปทีผู่้เรียนพัฒนาขึ้น โดยการใช้ Simulator และ
อุปกรณ์จริง (หากมี) ผู้เรียนจะได้เรียนรู้ขั้นตอนการตรวจสอบการทำงานของแอปก่อนนำไปใช้งานและเห็นผลลัพธ์
ของการพัฒนาแอปในสภาพแวดล้อมที่ใกล้เคียงการใช้งานจริง กิจกรรมนี้จะทำหน้าที่ปิดวงจรการเรียนรู้ ตั้งแต่การ
ออกแบบ พัฒนา ไปจนถึงการทดสอบ และช่วยให้ผู้เรียนเห็นภาพรวมของกระบวนการพัฒนาแอปอย่างครบถ้วน

การทดสอบการทำงานบนอุปกรณ์เสมือน (Simulator)

อุปกรณ์เสมือน หรือ Simulator คือ เครื่องมือที่ Xcode จัดเตรียมไว้เพื่อจำลอง
สภาพแวดล้อมของอุปกรณ์ Apple บนเครื่อง Mac โดยสามารถจำลอง iPhone,
iPad หรืออุปกรณ์รุ่นต่างๆ พร้อมระบบปฏิบัติการเวอร์ชันที่หลากหลาย การ
ทดสอบผ่าน Simulator มีข้อได้เปรียบที่สำคัญในด้าน ความสะดวกและรวดเร็วใน
การพัฒนา

Simulator ช่วยให้นักพัฒนาสามารถเริ่มต้นทดสอบแอปได้ทันทีโดยไม่ต้องมี
อุปกรณ์จริง โดยสามารถสั่งรันแอปเพื่อดูผลลัพธ์ได้อย่างรวดเร็ว ทำให้เกิดวงจร
การเรียนรู้แบบ เขียน–รัน–ปรับปรุง (Iterative Development) ซึ่งสอดคล้องกับ
แนวคิดการพัฒนาแบบ Agile

นอกจากนี้ Simulator ยังเหมาะสำหรับการทดสอบด้าน User Interface และ
Layout เช่น การปรับขนาดหน้าจอ การเปลี่ยน Orientation

	 แต่อย่างไรก็ตาม Simulator ก็ยังคงเป็นเพียงการ “จำลอง” จึงไม่สามารถสะท้อนพฤติกรรมของฮาร์ดแวร์
ในอุปกรณ์จริงได้ทั้งหมด เช่น ประสิทธิภาพของเซนเซอร์ กล้อง ความแม่นยำของ GPS หรือการจัดการพลังงาน
ของแบตเตอรี่

ขั้นตอนในการทดสอบแอปบนอุปกรณ์เสมือน

1. เปิดโปรเจกต์ SwiftUI ใน Xcode บริเวณ Toolbar ด้านบน เลือกเมนู Run Destination และเลือกอุปกรณ์
เสมือนที่ต้องการ เช่น iPhone 17 Pro, iPhone SE หรือ iPad (รุ่นต่าง ๆ)

2. คลิก ปุ่ม Run หรือ กด Command + R

ผู้สอนสามารถใช้ Simulator เป็นฐานในการตั้งคำถามเพื่อให้ผู้เรียนสะท้อนคิด เช่น
- หากเปลี่ยนอุปกรณ์จาก iPhone เป็น iPad การแสดง UI จะมีการเปลี่ยนไปอย่างไร ?
- Layout ที่ออกแบบไว้รองรับการหมุนหน้าจอหรือไม่ ?

หมายเหตุ : หากต้องการเพิ่มอุปกรณืสำหรับการทดสอบ สามารถทำได้ที่ Manage Run Distinations…

ขั้นตอนในการทดสอบแอปบนอุปกรณ์จริง
	 ในการสาธิตการทดสอบการทำงานของแอปบนอุปกรณ์จริง ผู้สอนจะต้องดำเนินการสมัครบัญชี Apple ID
สำหรับนักพัฒนา ซึ่งสามารถดำเนินการสมัครได้ผ่านเว็บไซต์ https://developer.apple.com/ และเปิดคุณสมบัติ
Developer Mode บนอุปกรณ์ที่ต้องการใช้ในการทดสอบ โดยสามารถเปิดใช้คุณสมบัติดังกล่าวได้ที่ Setting >
Privacy & Security > Developer Mode และกำหนดค่าให้เป็น On

https://developer.apple.com/

เมื่อเชื่อมต่ออุปกรณ์เข้ากับเครื่อง Mac ผ่านสาย
USB แล้ว อุปกรณ์ดังกล่าวจะถูกแสดงขึ้นมาให้
เลือกในส่วน Run Destination โดยอัตโนมัติ

เนื่องจากแอปที่ติดตั้งบนอุปกรณ์จริง จำเป็นจะต้องผ่านขั้นตอนการยืนยันแหล่งที่มา ซึ่งเป็นกระบวนการทางความ
ปลอดภัยที่เรียกว่า Code Signing ซึ่งถูกใช้เพื่อการระบุว่าแอปถูกสร้างโดยนักพัฒนาที่เชื่อถือได้และโค้ดของแอปไม่
ได้ถูกแก้ไขหรือดัดแปลงหลังจากผ่านกระบวนการสร้าง (Build) แล้ว สำหรับบัญชผีู้พัฒนาแบบ Free ให้ดำเนินการ
ดังนี้

1. เปิดการตั้งค่าโปรเจกต์ใน Xcode และไปที่ แท็บ Signing & Capabilities
2. คลิกที่ ปุ่ม Team เพื่อเชื่อมโยงกับบัญชี Apple ID สำหรับการพัฒนา โดยตรวจสอบให้แน่ใจว่า Bundle

Identifier ของแอปไม่ซ้ำกับแอปอื่นที่เคยสร้างไว้ และ เปิดใช้งาน Automatic Signing
3. กำหนดเป้าหมายที่ Toolbar ของ Xcode โดยเลือกอุปกรณ์จริงที่เชื่อมต่ออยู่เป็น Run Destination
4. คลิกที่ ปุ่ม Run

หลังจากติดตั้งแอปบนอุปกรณ์เสร็จแล้ว
การเรียกแอปขึ้นมาทำงานครั้งแรกจำเป็น
ต้องมีการยืนยันสิทธิ์ของนักพัฒนา
(Trust Developer) บนอุปกรณ์เป็นขั้น
ตอนสุดท้าย โดยสามารถดำเนินการได้ที่
Setting > General > VPN & Device
Management

ภายใต้หัวข้อ Developer App จะปรากฏชื่อ Apple ID หรือ Team ที่ใช้พัฒนาแอป ให้แตะเลือกที่ชื่อดังกล่าวเพื่อ
ทำการยืนยันสิทธิ์นักพัฒนาบนอุปกรณ์

ขั้นสรุปบทเรียน (Conclusion)

	 ภายหลังจากผู้เรียนได้ทำกิจกรรมการเรียนรู้ครบทั้ง 6 กิจกรรม ผู้สอนควรชวนผู้เรียนสรุปร่วม
กันว่า บทเรียนนี้ไม่ได้มุ่งเพียงการเรียนรู้วิธีใช้ Xcode ในเชิงเทคนิค แต่เป็นการทำความเข้าใจกระบวนการ
พัฒนาแอปพลิเคชันบนแพลตฟอร์มของ Apple อย่างเป็นระบบ ตั้งแต่การเตรียมสภาพแวดล้อม การเขียน
โค้ด การออกแบบส่วนติดต่อผู้ใช้ ไปจนถึงการทดสอบการทำงานของแอป

	 ผู้สอนควรเน้นให้ผู้เรียนเห็นว่า Xcode ทำหน้าที่เป็น Integrated Development Environment
(IDE) ที่สนับสนุนการทำงานของนักพัฒนาในทุกขั้นตอน ไม่ใช่เพียงพื้นที่สำหรับพิมพ์โค้ด การเข้าใจ
บทบาทของส่วนประกอบต่าง ๆ เช่น Navigator, Editor, Canvas และ Debug Area ช่วยให้ผู้เรียน
สามารถเลือกใช้เครื่องมือได้อย่างเหมาะสมและมีประสิทธิภาพ

	 ในส่วนของการพัฒนาแอปด้วย SwiftUI ผู้เรียนได้เรียนรู้แนวคิด Declarative UI และโครงสร้าง
พื้นฐานของแอป ตั้งแต่ระดับ App และ Scene ไปจนถึง View Hierarchy ซึ่งช่วยเปลี่ยนวิธีคิดจากการ
กำหนดขั้นตอนการทำงานของ UI ไปสู่การอธิบายลักษณะของ UI ที่ต้องการให้เกิดขึ้น
การใช้ Playground ทำให้ผู้เรียนเห็นว่าการทดลองเขียนโปรแกรมและอัลกอริทึมเป็นกระบวนการเรียนรู้ที่
ส ำคัญ ผู้เรียนสามารถทดลองแนวคิด เห็นผลลัพธ์ทันที และเรียนรู้จากความผิดพลาดก่อนนำไปใช้กับโปร
เจกต์จริง
	 ผู้สอนควรสรุปร่วมกับผู้เรียนว่า คุณสมบัติสำคัญของ Xcode เช่น Syntax Highlighting, Code
Completion และ Compiler Errors & Warnings เป็นเครื่องมือที่ช่วยยกระดับคุณภาพของโค้ด และส่ง
เสริมการคิดเชิงโครงสร้าง โดยข้อผิดพลาดและคำเตือนเป็นข้อมูลสะท้อนกลับที่ช่วยพัฒนาความเข้าใจ
ไม่ใช่อุปสรรคในการเรียนรู้

	 ในกิจกรรม Coding Intelligence ผู้เรียนได้เรียนรู้การใช้ AI ในฐานะผู้ช่วยในการอธิบาย วิเคราะห์
และปรับปรุงโค้ด ภายใต้แนวคิด AI-Assisted Development ซึ่งยังคงให้มนุษย์เป็นผู้ตัดสินใจหลัก
สุดท้าย ผู้สอนควรเชื่อมโยงไปสู่การทดสอบแอปบน Simulator และอุปกรณ์จริง เพื่อให้ผู้เรียนเห็นว่าการ
พัฒนาแอปไม่สิ้นสุดที่การเขียนโค้ด แต่ต้องผ่านการทดสอบในบริบทที่หลากหลาย รวมทั้งตระหนักถึง
ประเด็นด้านความปลอดภัยและ Code Signing

คำถามเพื่อการสะท้อนผลการเรียนรู้จากการทำกิจกรรม

1. จงอธิบายว่า Xcode เป็นเครื่องมือที่มีความสำคัญต่อการพัฒนาแอปตามแนวคิดแบบ Agile อย่างไร ?
2. นักเรียนคิดว่า ส่วนประกอบใดของ Xcode ที่มีผลต่อประสิทธิภาพในการพัฒนาแอปมากที่สุด เพราะเหตุใด ?
3. การใช้ Playground มีประโยชน์ต่อการเรียนรู้ภาษา Swift และการพัฒนาแอปอย่างไร ?
4. Syntax Highlighting และ Code Completion ช่วยเพิ่มประสิทธิภาพในการเขียนโค้ดได้หรือไม่ อย่างไร ?
5. การทำกิจกรรม Compiler Errors และ Warnings มีบทบาทอย่างไรต่อการเรียนรู้ และการปรับปรุงคุณภาพ

ของโค้ดอย่างไร ?
6. Coding Intelligence ช่วยสนับสนุนการเรียนรู้ของเราได้อย่างไร และมขี้อควรระวังในการใช้อย่างไร ?
7. อธิบายความแตกต่างระหว่างการทดสอบแอปบน Simulator และอุปกรณ์จริง และเหตุใดการทดสอบทั้งสอง

รูปแบบจึงมีความสำคัญต่อการพัฒนาแอป

คำศัพท์สำคัญ

Integrated Development Environment (IDE)
สภาพแวดล้อมซอฟต์แวร์แบบบูรณาการที่ออกแบบมาเพื่อสนับสนุนกระบวนการพัฒนาโปรแกรมอย่างครบวงจร
ตั้งแต่การเขียนโค้ด การตรวจสอบความถูกต้อง การคอมไพล์/รัน การทดสอบ ไปจนถึงการดีบัก โดยรวมเครื่องมือ
ที่จำเป็นไว้ในระบบเดียว เพื่อเพิ่มประสิทธิภาพ ความถูกต้อง และความเป็นระบบในการพัฒนาซอฟต์แวร์

Bundle Identifier
ตัวระบุเอกลักษณ์ (Unique Identifier) ของแอปพลิเคชันบนแพลตฟอร์มของ Apple (iOS, iPadOS, macOS,
watchOS, tvOS) ใช้เพื่อบอกระบบปฏิบัติการและบริการของ Apple ว่า “แอปนี้คือแอปใด” ในเชิงเทคนิค Bundle
Identifier เป็น สตริงแบบ Reverse-DNS ที่ต้องไม่ซ้ำกับแอปอื่นในระบบเดียวกัน

ระบบจัดการเวอร์ชัน (Version Control System: VCS)
ระบบซอฟต์แวร์ที่ใช้ควบคุม ติดตาม และจัดการการเปลี่ยนแปลงของไฟล์หรือซอร์สโค้ดตามลำดับเวลา เพื่อให้นัก
พัฒนาสามารถย้อนกลับ ตรวจสอบ เปรียบเทียบ และทำงานร่วมกันได้อย่างเป็นระบบ โดยเฉพาะในงานพัฒนา
ซอฟต์แวร์ที่มีการปรับปรุงเอกสารหรือโค้ดอย่างต่อเนื่อง

Playground
สภาพแวดล้อมสำหรับทดลองเขียนและรันโค้ดภาษา Swift แบบโต้ตอบ (Interactive Environment) ที่ออกแบบมา
เพื่อสนับสนุนการเรียนรู้ การทดลองแนวคิด และการทดสอบโค้ด โดยไม่จำเป็นต้องสร้างโปรเจกต์แอปเต็มรูปแบบ

Compiler
คอมไพเลอร์ คือ ซอฟต์แวร์ที่ทำหน้าที่แปลโปรแกรมจากภาษาระดับสูงที่มนุษย์เขียน (เช่น Swift) ให้เป็นรูปแบบที่
คอมพิวเตอร์สามารถประมวลผลได้ (เช่น Machine Code หรือ Intermediate Representation) โดยกระบวนการ
แปลนี้จะดำเนินไปอย่างเป็นระบบ พร้อมทั้ง ตรวจสอบความถูกต้องของโค้ด ตามกฎของภาษา

Static Analysis
กระบวนการตรวจสอบ วิเคราะห์ และประเมินคุณภาพของโค้ดโดยไม่ต้องรันโปรแกรม (analyzing code without
execution) เพื่อค้นหาข้อผิดพลาดเชิงโครงสร้าง ปัญหาด้านชนิดข้อมูล ความเสี่ยงเชิงตรรกะ และประเด็นด้าน
คุณภาพของโค้ด จัดเป็นส่วนหนึ่งของกระบวนการตรวจสอบโค้ดอัตโนมัติ (Automated Code Review) ที่มุ่งเน้น
การป้องกันปัญหาก่อนเกิดจริง (Preventive Approach)

Code Signing
กระบวนการรับรองความถูกต้องและความน่าเชื่อถือของซอฟต์แวร์ โดยการใช้ ลายเซ็นดิจิทัล (Digital Signature)
เพื่อยืนยันว่า ซอร์สโค้ดหรือแอปถูกสร้างโดยนักพัฒนาที่ระบุตัวตนได้จริง และโค้ดไม่ถูกแก้ไขหรือดัดแปลงหลังจาก
ถูกเซ็นรับรองแล้ว

ในระบบนิเวศของ Apple (iOS, iPadOS, macOS) Code Signing ถือเป็น กลไกด้านความมั่นคงปลอดภัย (Security
Mechanism) ที่สำคัญมาก และเป็นเงื่อนไขบังคับในการรันและเผยแพร่แอป

แนวคิดการพัฒนาซอฟต์แวร์แบบ Agile
แนวคิดและกรอบการทำงานในการพัฒนาซอฟต์แวร์ที่มุ่งเน้น ความยืดหยุ่น (Flexibility) การพัฒนาแบบเป็นรอบ
สั้น ๆ (Iterative & Incremental) และ การตอบสนองต่อการเปลี่ยนแปลงอย่างรวดเร็ว โดยให้ความสำคัญกับ
คุณค่าในการใช้งานจริงมากกว่าการทำตามแผนที่ตายตัว

Agile มีรากฐานมาจาก Agile Manifesto (ค.ศ. 2001) ซึ่งเสนอกรอบความคิดที่แตกต่างจากการพัฒนาแบบ
ดั้งเดิม (เช่น Waterfall) โดยสรุปสาระสำคัญได้ดังนี้
1. การพัฒนาแบบวนซ้ำ (Iterative Development) โดยงานจะถูกแบ่งออกเป็นรอบสั้น ๆ (Iteration หรือ Sprint)

ในแต่ละรอบจะมีการออกแบบ พัฒนา ทดสอบ และประเมินผลอย่างครบถ้วน ทำให้ทีมสามารถเรียนรู้จากผลลัพธ์
และปรับปรุงงานในรอบถัดไปได้ทันที

2. การส่งมอบงานเป็นชิ้นย่อยที่ใช้งานได้จริง (Incremental Delivery) แทนที่จะรอให้โครงการเสร็จสมบูรณ์
ทั้งหมดก่อนใช้งาน Agile จะมุ่งส่งมอบผลงานย่อยที่มีคุณค่าและใช้งานได้จริงอย่างต่อเนื่อง

3. การตอบสนองต่อการเปลี่ยนแปลง (Responding to Change) ซึ่ง Agile ยอมรับว่า ความต้องการของผู้ใช้และ
บริบทการใช้งานอาจเปลี่ยนแปลงได้ตลอดเวลา จึงออกแบบกระบวนการให้สามารถปรับแผนและปรับทิศทางได้
โดยไม่กระทบโครงสร้างหลักของงาน

4. การมีส่วนร่วมของผู้มีส่วนได้ส่วนเสีย (Stakeholder Collaboration) ผู้ใช้ ลูกค้า หรือผู้มีส่วนได้ส่วนเสียมี
บทบาทสำคัญในการให้ข้อมูลย้อนกลับ (Feedback) อย่างสม่ำเสมอ เพื่อให้ผลงานที่พัฒนาขึ้นสอดคล้องกับ
ความต้องการจริง

5. การให้ความสำคัญกับทีมและการสื่อสาร โดย Agile เชื่อว่าทีมที่มีการสื่อสารที่ดีและมีอิสระในการตัดสินใจ จะ
สามารถสร้างผลงานที่มีคุณภาพได้ดีกว่าการทำงานตามคำสั่งหรือเอกสารเพียงอย่างเดียว

รายละเอียดสำหรับการอ้างอิงเอกสารชุดนี้
• ผู้เขียน ธิติ ธีระเธียร
• วันที่เผยแพร่ วันที่ 1 มกราคม 2569
• เข้าถึงได้จาก https://ajthiti.gitbook.io/develop-in-swift/meet-xcode
• เงื่อนใขในการใช้งาน This work is licensed under a Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International License.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	หัวข้อการเรียนรู้ : เริ่มต้นใช้ Xcode เพื่อเป็นเครื่องมือในการพัฒนา iOS Application ด้วย SwiftUI
	วัตถุประสงค์ในการทำกิจกรรม :
	กิจกรรมการเรียนรู้ชุดนี้ มุ่งพัฒนาความรู้และทักษะพื้นฐานของผู้เรียนในการใช้ Xcode ในฐานะเครื่องมือสำหรับการเขียนโปรแกรมภาษา Swift และการพัฒนาแอปพลิเคชันสำหรับอุปกรณ์ของ Apple ด้วย SwiftUI โดยเน้นให้ผู้เรียนได้สำรวจและทดลองเพื่อฝึกใช้คุณสมบัติและเครื่องมือต่าง ๆ ที่มีอยู่ใน Xcode ตลอดกระบวนการออกแบบ พัฒนา ทดสอบ และปรับปรุงแอปพลิเคชันให้สามารถทำงานได้อย่างมีประสิทธิภาพ นอกจากนี้ ยังส่งเสริมการประยุกต์ใช้เทคโนโลยีปัญญาประดิษฐ์เพื่อสนับสนุนการเรียนรู้และการพัฒนาแอปในลักษณะของ AI-Assisted Development ผ่านคุณสมบัติ Coding Intelligence
	บทความสำหรับอ่านประกอบการทำกิจกรรม https://ajthiti.gitbook.io/develop-in-swift/meet-xcode

